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And indeed all things that are
known have number. For it is not
possible that anything whatsoever be
understood or known without this.

Philolaus, 400 BC

Not everything that can be counted
counts, and not everything that
counts can be counted.

W. B. Cameron, 1963



Preface to the handbook
edition

The handbook1 is dedicated to all students interested in machine learning who are
not content with running some lines of (deep learning) code but who are eager to
learn about this discipline’s assumptions, limitations, and perspectives. When I
was a student, my dream was to become an AI researcher and save humankind
with intelligent robots. For several reasons, I abandoned such ambitions (but you
never know). In exchange, I really got into machine learning by realising that this
discipline is intimately related to the scientific process transforming observations
into knowledge.

The first version of this handbook was made publicly available in 2004 with two
objectives and one ambition. The first objective was to provide a handbook to ULB
students since I was (and still am) strongly convinced that a decent course should
come with a decent handbook. The second objective was to group together all the
material that I consider fundamental (or at least essential) for a Ph.D. student to
undertake a thesis in my lab. At that time, there were already plenty of excellent
machine learning reference books. However, most of the existing work did not
sufficiently acknowledge what machine learning owes to statistics and concealed (or
did not make explicit enough, notably because of incomplete or implicit notation)
important assumptions underlying the process of inferring models from data.

The ambition was to make a free academic reference on the foundations of
machine learning available on the web. There are several reasons for providing
free access to this work: I am a civil servant in an institution that already takes
care of my salary; most of the material is not original (though its organisation,
notation definition, exercises, code and structure represent the primary added value
of the author); a frequent update is important in a book on such a hot topic; in
many parts of the world access to expensive textbooks or reference material is still
difficult for the majority of students; most of the knowledge underlying this book
was obtained by the author thanks to free (or at least non-charged) references and,
last but not least, education seems to be the last societal domain where a communist
approach may be as effective as rewarding. Personally, I would be delighted if this
book could be used to facilitate the access of underfunded educational and research
communities to state-of-the-art scientific notions.

Though machine learning was already a hot topic at the end of the 20th century,
nowadays, it is definitely surrounded by a lot of hype and excitement. The number
of publications describing or using a machine learning approach in the last decades
is countless, making it impossible to address the heterogeneity of the domain in
a single book. Therefore, it is interesting to check how much material from the
first edition is still useful: reassuringly enough, the more the nature of the content
is fundamental, the less it is prone to obsolescence. Nevertheless, a lot of new

1An extended book version is available at https://leanpub.com/

statisticalfoundationsofmachinelearning
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things (not only deep learning) happened in the domain, and, more specifically, I
realised the importance of some fundamental concepts that were neglected in the
first edition.

In particular, I added a number of exercises, R scripts, and Shiny dashboards
to visualise and illustrate (sometimes too abstract) probabilistic and estimation
notions. In this sense, I am convinced that the adoption of Monte Carlo simulation
to introduce probabilistic concepts should be a more common habit in introductory
statistics classes.

For sure, I am strongly indebted to a lot of authors and their publications. I
hope I acknowledged them adequately in the bibliography. If I did not give enough
credit to some of the existing works, please do not hesitate to contact me. Last
but not least, the book is dedicated to all my ULB students and MLG researchers
in whom I have tried for many years to inculcate complex concepts of statistical
learning. Their eyes staring at my hand-waving, while I was trying to elucidate
some abstruse notions, were the best indicators of how to adapt, select and improve
the book’s content.

To all those who want to send a note or continue to follow my machine learning
journey, see you on my blog https://datascience741.wordpress.com.

Software

Several scripts and dashboards are used in the main text to illustrate statistical and
machine learning notions. All the scripts have been implemented in R, Shiny and
are available in the R github package gbcode. Information about how to install and
use the companion package are available in Appendix G and H.
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Chapter 1

Introduction

Over the last decades, a growing number of organisations have been allocating a
vast amount of resources to construct and maintain databases and data warehouses.
In scientific endeavours, data refers to carefully collected observations about some
phenomenon under study. In business, data capture information about economic
trends, critical markets, competitors, and customers. In manufacturing, data record
machinery performances and production rates in different conditions. There are
essentially two reasons why people gather increasing volumes of data. First, they
think some valuable assets are implicitly coded within them, and, second, computer
technology enables effective data storage and processing at reduced costs.

The idea of extracting useful knowledge from volumes of data is common to many
disciplines, from statistics to physics, from econometrics to system identification
and adaptive control. The procedure for finding useful patterns in data is known
by different names in different communities, viz., knowledge extraction, pattern
analysis, data processing. In the artificial intelligence community, the most common
name is machine learning [67]. More recently, the set of computational techniques
and tools to support the modelling of a large amount of data is grouped under the
more general label of data science.

The need for programs that can learn was stressed by Alan Turing, who argued
that it might be too ambitious to write from scratch programs for tasks that even
humans must learn to perform. This handbook aims to present the statistical
foundations of machine learning intended as the discipline which deals with the
automatic design of models from data. In particular, we focus on supervised learning
problems (Figure 1.1), where the goal is to model the relation between a set of input
variables and one or more output variables, which are considered to be dependent
on the inputs in some manner.

Since the handbook deals with artificial learning methods, we do not take into
consideration any argument of biological or cognitive plausibility of the learning
methods we present. Learning is postulated here as a problem of statistical estima-
tion of the dependencies between variables on the basis of empirical data.

The relevance of statistical analysis arises as soon as there is a need to extract
useful information from data records obtained by repeatedly measuring an observed
phenomenon. Suppose we are interested in learning about the relationship1 between
two observed variables x (e.g. the height of a child) and y (e.g. the weight of a
child), which are quantitative observations of some phenomenon of interest (e.g.
obesity during childhood). Sometimes, the a priori knowledge that describes the
relation between x and y is available. In other cases, no satisfactory theory exists,
and all that we can use are repeated measurements of x and y.

1Note by relation we refer here to a probabilistic association between the two variables without
any causal connotation.
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Figure 1.1: The supervised learning setting. Machine learning aims to infer from
observed data the best model of the stochastic input/output dependency.

In this book, our focus is the second situation where we assume that only a set of
observed data is available. The reasons for addressing this problem are essentially
two. First, the more complex is the input/output relation, the less effective will be
the contribution of a human expert in extracting a model of the relation. Second,
data-driven modelling may be a valuable support for the designer also in modelling
tasks where she can take advantage of existing knowledge.

Though machine learning is becoming a central component in many (so-called)
intelligent applications, we deem that simply considering it as a powerful computa-
tional technology would be utterly reductive. The process of extracting knowledge
from observations lies at the root of the modern scientific process, and the most
challenging issues in machine learning relate to well-established philosophical and
epistemological problems, notably induction or the notion of truth [29].

Modelling from data

Modelling from data is often viewed as an art, mixing an expert’s insight with the
information contained in the observations. A typical modelling process cannot be
considered as a sequential process but is better represented as a loop with many
feedback paths and interactions with the model designer. Various steps are repeated
several times aiming to reach, through continuous refinements, a good description
of the phenomenon underlying the data.

The modelling process consists of a preliminary phase that brings the data from
their original form to a structured configuration and a learning phase that aims to
select the model, or hypothesis, that best approximates the data (Figure 1.2).

The preliminary phase can be decomposed in the following steps:

Problem formulation. Here the model designer chooses a particular application
domain, a phenomenon to be studied, a number of descriptive variables and
hypothesises the existence of a (stochastic) relation (or dependency) between
the measurable variables. The definition of the input variables (and where
necessary their transformations) is a very crucial step and is called feature
engineering. It is important to stress here the proactive role played by the
human (in contrast to a tabula rasa approach), and that this role is a necessary
condition for any knowledge process.
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Figure 1.2: The modelling process and its decomposition in the preliminary phase
and learning phase.
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Figure 1.3: A training set for a simple supervised learning problem with one input
variable x and one output variable y. The dots represent the observed samples.

Experimental design. This step aims to return a dataset which, ideally, should
be made of observations that are well-representative of the phenomenon in
order to maximise the performance of the modelling process [51].

Pre-processing. In this step, raw data are cleaned to make learning easier. Pre-
processing includes a large set of actions on the observed data, such as noise
filtering, outlier removal, missing data treatment [112], feature selection, and
so on.

Once the preliminary phase has returned the dataset in a structured input/output
form (e.g. a two-column table), called training set, the learning phase begins. A
graphical representation of a training set for a simple learning problem with one
input variable x and one output variable y is given in Figure 1.3. This manuscript
will mostly focus on this second phase assuming that the preliminary steps have
already been performed by the model designer.

Suppose that, on the basis of the collected data, we wish to learn the unknown
dependency existing between the x variable and the y variable. The knowledge of
this dependency could shed light on the observed phenomenon and let us predict
the value of the output y for a given input (e.g. what is the expected weight of a
child who is 120cm tall?). What is difficult and tricky in this task is the finiteness
and the random nature of data. For instance, a second set of observations of the
same pair of variables could produce a dataset (Figure 1.4) that is not identical to
the one in Figure 1.3 though both originate from the same measurable phenomenon.
This simple fact suggests that a simple interpolation of the observed data would
not produce an accurate model of the data.

The goal of machine learning is to formalise and optimise the procedure which
brings from data to model and consequently from data to predictions. A learning
procedure can be concisely defined as a search, in a space of possible model config-
urations, of the model which best represents the phenomenon underlying the data.
As a consequence, a learning procedure requires both a search space where possible
solutions may be found and an assessment criterion that measures the quality of
the solutions in order to select the best one.

The search space is defined by the designer using a set of nested classes with
increasing capacity (or representation power). For our introductory purposes, it is
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Figure 1.4: A second realisation of the training set for the same phenomenon ob-
served in Figure 1.3. The dots represent the observed examples.

Figure 1.5: Training set and three parametric models which belong to the class of
first order polynomials.

sufficient to consider here a class as a set of input/output models (e.g. the set of
polynomial models) with the same model structure (e.g. second-order degree) and
the capacity of the class as a measure of the set of input/output mappings which
can be approximated by the models belonging to the class.

Figure 1.5 shows the training set of Figure 1.3 together with three parametric
models which belong to the class of first-order polynomials. Figure 1.6 shows the
same training set with three parametric models, which belong to the class of second-
order polynomials.

The reader could visually decide whether the class of second-order models is
more suitable or not than the first-order class to model the dataset. At the same
time, she could guess which among the three plotted models is the one that produces
the best fitting.

In real high-dimensional settings, however, a visual assessment of the quality
of a model is neither possible nor sufficient. Data-driven quantitative criteria are
therefore required. We will assume that the goal of learning is to achieve a good
statistical generalisation. This means that the learned model is expected to return
an accurate prediction of the dependent (output) variable for new (unseen) values
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Figure 1.6: Training set and three parametric models which belong to the class of
second-order polynomials.

of the independent (input) variables. By new values we intend values which are not
part of the training set but are generated by the same stochastic process.

Once the classes of models and the assessment criteria are fixed, the goal of
a learning algorithm is to search i) for the best class of models and ii) for the
best parametric model within such a class. Any supervised learning algorithm is
then made of two nested loops denoted as the structural identification loop and the
parametric identification loop.

Structural identification is the outer loop that seeks the model structure which
is expected to have the best accuracy. It is composed of a validation phase, which
assesses each model structure on the basis of the chosen assessment criterion, and a
selection phase which returns the best model structure on the basis of the validation
output. Parametric identification is the inner loop that returns the best model for a
fixed model structure. We will show that the two procedures are intertwined since
the structural identification requires the outcome of the parametric step in order to
assess the goodness of a class.

Statistical machine learning

On the basis of the previous section, we could argue that learning is nothing more
than a standard problem of optimisation. Unfortunately, the reality is far more
complex. In fact, because of the finite amount of data and their random nature,
there exists a strong correlation between parametric and structural identification
steps, which makes non-trivial the problem of assessing and, finally, choosing the
prediction model. In fact, the random nature of the data demands a definition of
the problem in stochastic terms and the adoption of statistical procedures to choose
and assess the quality of a prediction model. In this context, a challenging issue is
how to determine the class of models more appropriate to our problem. Since the
results of a learning procedure are found to be sensitive to the class of models chosen
to fit the data, statisticians and machine learning researchers have proposed over
the years a number of machine learning algorithms. Well-known examples are linear
models, neural networks, local modelling techniques, support vector machines, and
regression trees. The aim of such learning algorithms, many of which are presented
in this book, is to combine high generalisation with an effective learning procedure.

However, the ambition of this handbook is to present machine learning as a sci-
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entific domain that goes beyond the mere collection of computational procedures.
Since machine learning is deeply rooted in conventional statistics, any introduc-
tion to this topic must include some introductory chapters to the foundations of
probability, statistics and estimation theory. At the same time, we intend to show
that machine learning widens the scope of conventional statistics by focusing on a
number of topics often overlooked by statistical literature, like nonlinearity, large
dimensionality, adaptivity, optimisation and analysis of massive datasets.

It is important to remark, also, that the recent adoption of machine learning
models is showing the limitation of pure black-box approaches, targeting accuracy
at the cost of interpretability. This is made evident by the embedding of automatic
approaches in decision-making processes with impact on ethical, social, political, or
juridical aspects. While we are personally skeptical about gaining any interpretabil-
ity from a large number of parameters and hyperparameters underlying a supervised
learner, we are confident that human insight can be obtained by techniques able
to reduce or modularise large variate tasks. In this direction, feature selection and
causal inference techniques are promising approaches to master the complexity of
data-driven modelling and return human accessible descriptions (e.g. in the form
of mechanisms).

This manuscript aims to find a good balance between theory and practice by
situating most of the theoretical notions in a real context with the help of practical
examples and real datasets. All the examples are implemented in the statistical
programming language R [140] made available by the companion package gbcode

(Appendix G). In this second edition, we provide as well a number of Shiny dash-
boards (Appendix H) to give the reader a more tangible idea of somewhat abstract
concepts. For an introduction to R we refer the reader to [50, 164]. This prac-
tical connotation is particularly important since machine learning techniques are
nowadays more and more embedded in plenty of technological domains, like bioin-
formatics, robotics, intelligent control, speech and image recognition, multimedia,
web and data mining, computational finance, business intelligence.

Outline

The outline of the book is as follows. Chapter 2 summarises the relevant back-
ground material in probability. Chapter 3 introduces the classical parametric
approach to parametric estimation and hypothesis testing. Chapter 4 presents
some nonparametric alternatives to the parametric techniques discussed in Chapter
3. Chapter 5 introduces supervised learning as the statistical problem of assess-
ing and selecting a hypothesis function on the basis of input/output observations.
Chapter 6 reviews the steps which lead from raw observations to a final model. This
is a methodological chapter that introduces some algorithmic procedures underlying
most of the machine learning techniques. Chapter 7 presents conventional linear
approaches to regression and classification. Chapter 8 introduces some machine
learning techniques which deal with nonlinear regression and classification tasks.
Chapter 9 presents the model averaging approach, a recent and powerful way for
obtaining improved generalisation accuracy by combining several learning machines.
Chapter 10 deals with the problem of dimensionality reduction and in particular
with feature selection strategies. Although the handbook focuses on supervised
learning, some related notions of unsupervised learning and density estimation are
presented in Appendix A.

We invite the readers who are interested in additional topics (philosophical foun-
dations, graphical modeling, Bayesian estimation, time series forecasting and causal
inference) to refer to the extended version of the handbook [29].
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1.1 Notations

Throughout this manuscript, boldface denotes random variables (e.g. x) and nor-
mal font is used for instances (realisations) of random variables (e.g. x). Strictly
speaking, one should always distinguish in notation between a random variable and
its realisation. However, we will adopt this extra notational burden only when the
meaning is not clear from the context. Then we will use Prob {z} (or (p(z)) as
a shorthand for Prob {z = z} ((pz(z)) when the identity of the random variable is
clear from the context.

As far as variables are concerned, lowercase letters denote scalars or vectors of
observables, greek letters denote parameter vectors, and uppercase denotes matrices.
Uppercase in italics denotes generic sets while uppercase in greek letters denotes
sets of parameters.

Warning : a typical ambiguity in multivariate data notations comes from the use
of a subscript to identify the observation of dataset, e.g. the use of xi to identify the
ith realisation of the random vector x ∈ Rn. Now xi could be used as well to refer
to the realisation of the scalar random variable xi ∈ R. This book is no exception
in this sense but we are confident that the context will be of help to the reader to
distinguish between the two cases.

Gender-neutral pronouns: computer sciences suffer from the gender issue defi-
nitely more than other sciences. Of course, you won’t find any solution in this book
but the author (a man) felt odd in referring to a generic reader by using a masculine
pronoun exclusively. He then decided to use as much as possible a ”(s)he” notation
or, alternatively, a (balanced) random gender choice.

Generic notation

- θ: Parameter vector.

- θ: Random parameter vector.

- M : Matrix.

- [N × n] or [N,n]: Dimensionality of a matrix with N rows and n columns.

- MT : Transpose of the matrix M .

- diag[m1, . . . ,mN ]: Diagonal matrix with diagonal [m1, . . . ,mN ]

- M: Random matrix.

- θ̂: Estimate of θ.

- θ̂: Estimator of θ.

- τ : Index in an iterative algorithm.

Probability Theory notation

- Ω : Set of possible outcomes.

- ω: Outcome (or elementary event).

- {E}: Set of possible events.

- E : Event.
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- Prob {E}: Probability of the event E .

- (Ω, {E},Prob {·}): Probabilistic model of an experiment.

- Z: Domain of the random variable z.

- P (z): Probability distribution of a discrete random variable z. Also Pz(z).

- F (z) = Prob {z ≤ z}: Distribution function of a continuous random variable
z. Also Fz(z).

- p(z): Probability density of a continuous r.v.. Also pz(z).

- E[z]: Expected value of the random variable z.

- Ex[z] =
∫
X z(x, y)p(x)dx: Expected value of the random variable z averaged

over x.

- Var [z]: Variance of the random variable z.

- LN (θ): Likelihood of a parameter θ given the dataset DN .

- lN (θ): Log-Likelihood of a parameter θ given the dataset DN .

- U(a, b): univariate uniform probability density between a and b ≥ a.

- N (µ, σ2): univariate Normal probability density with mean µ and variance
σ2 (Section 2.12.2).

- z ∼ pz(z): random variable z with probability density pz(z).

- z ∼ N (µ, σ2): random variable z with Normal density with mean µ and
variance σ2.

Learning Theory notation

- x: Multidimensional random input vector.

- xj : jth component of the multidimensional input variable.

- X ⊂ Rn: Input space.

- y: output (or target) variable.

- Y ⊂ R: Output space.

- xi: ith observation of the random vector x (but also realisation of the variable
xi. See warning above)

- xij : ith observation of the jth component of the random vector x.

- f(x): Target regression function.

- w: Random noise variable.

- zi = 〈xi, yi〉: Input-output example (also observation or data point): ith case
in training set.

- N : Number of observed examples in the training set.
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- DN = {z1, z2, . . . , zN}: Training set.

- Λ: Class of hypothesis.

- α: Hypothesis parameter vector.

- h(x, α): Hypothesis function.

- Λs: Hypothesis class of capacity (or complexity) s.

- L(y, f(x, α)): Loss function.

- R(α): Functional risk.

- α0 = arg minα∈ΛR(α): lowest risk hypothesis in the class Λ .

- Remp(α): Empirical functional risk.

- αN : Parameter which minimises the empirical risk of DN

- GN : Mean integrated squared error (MISE).

- l: Number of folds in cross-validation.

- Ĝcv: Cross-validation estimate of GN .

- Ĝloo: Leave-one-out estimate of GN .

- Ntr: Number of examples used for training in cross-validation.

- Nts: Number of examples used for test in cross-validation.

- D(i): Training set with the ith example set aside.

- αN(i): Parameter which minimises the empirical risk of D(i).

- Ĝbs: Bootstrap estimate of GN .

- D(b): Bootstrap training set of size N generated by DN with replacement.

- α(b): Parameter which minimises the empirical risk of the bootstrap set D(b).

- B: Number of bootstrap examples.

Data analysis notation

- xi or X[i, ]: ith row of matrix X.

- x·j or X[, j]: jth column of matrix X.

- xij : jth element of vector xi.

- Xij or X[i, j]: ijth element of matrix X.

- q: Query point (point in the input space where a prediction is required).

- ŷq: Prediction in the query point.
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- ŷ−ji : Leave-one-out prediction in xi with the jth s example set aside.

- eloo
j = yj − ŷ−jj : Leave-one-out error with the jth example set aside.

- K(·, ·): Kernel function.

- B: Bandwidth.

- β: Linear coefficients vector.

- β̂: Least-squares parameters vector.

- β̂−j : Least-squares parameters vector with the jth example set aside.

- hj(x, α): jth, j = 1, . . . ,m, local model in a modular architecture.

- ρj : Activation or basis function.

- ηj : Set of parameters of the activation function.
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Chapter 2

Foundations of probability

Uncertainty is inescapable in the real world. Even without resort to indeterminism,
its pervasiveness is due to the complexity of reality and the limitations of human
observational skills and modelling capabilities. According to [107] uncertainty arises
because of limitations in our ability to observe the world, limitations in our ability
to model it, and possibly even because of innate nondeterminism. Probability theory
is one of many disciplines [128] concerned with the study of uncertain (or random)
phenomena. It is also, according to the author, one of the most successful ones
in terms of formalisation, theoretical and algorithmic developments and practical
applications. For this reason, in this book, we will adopt probability as the math-
ematical language to describe and quantify uncertainty. Uncertain phenomena,
although not predictable in a deterministic fashion, may present some regularities
and consequently be described mathematically by idealised probabilistic models.
These models consist of a list of all possible outcomes together with the respective
probabilities. The theory of probability makes it possible to infer from these models
the patterns of future behaviour.

This chapter presents the basic notions of probability which serve as a necessary
background to understand the statistical aspects of machine learning. We ask the
reader to become acquainted with two aspects: the notion of a random variable
as a compact representation of uncertain knowledge and the use of probability as
an effective formal tool to manipulate and process such uncertain information. In
particular, we suggest the reader give special attention to the notions of conditional
and joint probability. As we will see in the following, these two related notions
are extensively used by statistical modelling and machine learning to define the
dependence and the relationships between random variables.

2.1 The random model of uncertainty

We define a random experiment as any action or process which generates results
or observations which cannot be predicted with certainty. Uncertainty stems from
the existence of alternatives. In other words, each uncertain phenomenon is charac-
terised by a multiplicity of possible configurations or outcomes. Weather is uncer-
tain since it can take multiple forms (e.g. sunny, rainy, cloudy,...). Other examples
of random experiments are tossing a coin, rolling dice, passing an exam or measuring
the time to reach home.

A random experiment is then characterised by a sample space Ω that is a (finite
or infinite) set of all the possible outcomes (or configurations) ω of the experiment.
The elements of the set Ω are called experimental outcomes or realisations. For
example, in the die experiment, Ω = {ω1, ω2, . . . , ω6} and ωi stands for the outcome

25



26 CHAPTER 2. FOUNDATIONS OF PROBABILITY

corresponding to getting the face with the number i. If ω is the outcome of a
measurement of some physical quantity, e.g. pressure, then we could have Ω = R+.

The representation of an uncertain phenomenon is the result of a modelling
activity and, as such, it is not necessarily unique. In other terms different represen-
tations of a random experiment are possible. In the die experiment, we could define
an alternative sample space made of two sole outcomes: numbers equal to and dif-
ferent from 1. Alternatively, we could be interested in representing the uncertainty
of two consecutive tosses. In that case, the outcome would be the pair (ω(t), ω(t+1))
where ω(t) is the outcome at time t.

Uncertainty stems from variability. Each time we observe a random phenomenon,
we may observe different outcomes. In probabilistic jargon, observing a random
phenomenon is interpreted as the realisation of a random experiment. A single
performance of a random experiment is called a trial. This means that after each
trial, we observe one outcome ωi ∈ Ω.

A subset of experimental outcomes is called an event. Consider a trial that
generated the outcome ωi: we say that an event E occurred during the trial if the
set E contains the element ωi. For example, in the die experiment, an event (denoted
odd number) is the set of odd values E = {ω1, ω3, ω5}. This means that when we
observe the outcome ω5 the event odd number takes place.

An event composed of a single outcome, e.g. E = {ω1} is called an elementary
event.

Note that since events E are subsets, we can apply to them the terminology of
the set theory:

• Ω refers to the certain event i.e. the event that occurs in every trial.

• the notation

Ec = {ω : ω /∈ E}

denotes the complement of E .

• the notation

E1 ∪ E2 = {ω ∈ Ω : ω ∈ E1 OR ω ∈ E2}

refers to the event that occurs when E1 or E2 or both occur.

• the notation

E1 ∩ E2 = {ω ∈ Ω : ω ∈ E1 AND ω ∈ E2}

refers to the event that occurs when both E1 and E2 occur.

• two events E1 and E2 are mutually exclusive or disjoint if

E1 ∩ E2 = ∅ (2.1.1)

that is each time that E1 occurs, E2 does not occur as well.

• a partition of Ω is a set of disjoint sets Ej , j = 1, . . . , J (i.e. Ej1 ∩ Ej2 = ∅
∀ji, j2 ∈ J) such that

∪Jj=1Ej = Ω

• given an event E we define the indicator function of E by

IE(ω) =

{
1 if ω ∈ E
0 if ω /∈ E

(2.1.2)
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Let us now consider the notion of class of events. An arbitrary collection of
subsets of Ω is not a class of events. We require that if E1 and E2 are events, the
same also holds for the intersection E1∩E2 and the union E1∪E2. A set of events that
satisfies these conditions is called, in mathematical terms, a Borel field [127]. We
will consider only Borel fields since we want to deal not only with the probabilities
of single events but also with the probabilities of their unions and intersections.

2.1.1 Axiomatic definition of probability

Probability is a measure of uncertainty. Once a random experiment is defined, this
measure associates to each possible outcome ω a number between 0 and 1. It follows
that we can assign to each event E a real number Prob {E} ∈ [0, 1] which denotes
the probability of the event E . The measure associated with the event including all
possibilities is 1. The function Prob {·} : 2Ω → [0, 1] is called probability measure or
probability distribution and must satisfy the following three axioms:

1. Prob {E} ≥ 0 for any E .

2. Prob {Ω} = 1

3. Prob {E1 ∪ E2} = Prob {E1} + Prob {E2} if E1 and E2 are mutually exclusive
(Equation (2.1.1)).

These conditions are known as the axioms of the theory of probability [108]. The
first axiom states that all the probabilities are nonnegative real numbers. The sec-
ond axiom attributes a probability of unity to the universal event Ω, thus providing
a normalisation of the probability measure. The third axiom states that the prob-
ability function must be additive for disjoint events, consistently with the intuitive
idea of how probabilities behave.

So from a mathematician perspective, probability is easy to define: it is a
countably additive set function defined on a Borel field, with a total mass of one.
Every probabilistic property, for instance E1 ⊂ E2 ⇒ Prob {E1} ≤ Prob {E2} or
Prob {Ec} = 1 − Prob {E}, can be derived directly or indirectly from the axioms
(and only the axioms).

There are many interpretations and justifications of these axioms, and we dis-
cuss the frequentist and the Bayesian interpretation in Section 2.2.2 briefly. What
is relevant here is that the probability function is a formalisation of uncertainty
and that most of its properties and results appear to be coherent with the human
perception of uncertainty [99].

2.1.2 Sample space and random variables

The sample space Ω is the (finite or infinite) set of all the possible outcomes (or
configurations) ω of the experiment. In most probabilistic models, it is convenient
to provide a structure to such space, for instance by defining it as the Cartesian
product (or product set) of the domains of several variables. A variable is any
property or descriptor (categorical or numerical) of a phenomenon that can take
multiple values. Suppose for instance that we want to model, in a very compact way,
the atmospheric weather: we could use three categorical random variables where

1. the first represents the sky condition and takes value in the finite set {CLEAR,
CLOUDY}.

2. the second represents the barometer trend and takes value in the finite set
{RISING,FALLING},

3. the third represents the humidity in the afternoon and takes value in {DRY,WET}.
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Sky Barometer Humidity
ω1 CLEAR RISING DRY
ω2 CLEAR RISING WET
ω3 CLEAR FALLING DRY
ω4 CLEAR FALLING WET
ω5 CLOUDY RISING DRY
ω6 CLOUDY RISING WET
ω7 CLOUDY FALLING DRY
ω8 CLOUDY FALLING WET

Table 2.1: Sample space as the product set of three binary categorical variables
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Figure 2.1: Visualisation of two events and probability measures: Venn diagram
(left), two-way table (centre), probability distribution table (right)

The associated sample space is made of 8 outcomes in Table 2.1. In this repre-
sentation the definition of an event as a subset of experimental outcomes coincides
with any declarative statement made using variables. For instance the statement
”the sky is clear” corresponds to the event {ω1, ω2, ω3, ω4} while the statement ”the
weather is dry and the barometer is falling” corresponds to the event {ω3, ω7}. In
what follows we will use the product set representation of the sample space every
time it is more interesting to reason in terms of relationships between variables than
in terms of relationships between event.

2.1.3 Visualisation of probability measures

Since probabilistic events are sets of outcomes, Venn diagrams could be a convenient
manner to illustrate the relations between events and the notion of probability
measure. Suppose that you are a biker and you are interested in representing
the variability of weather and traffic conditions in your town in the morning. In
particular, you are interested in the probability that the morning will be sunny (or
not) and the road busy (or not). In order to formalise your practical issue, you
could define the uncertainty about the morning state by defining a sample space
which is the set of all possible morning conditions. Two notions are of interest
here: sunny mornings and traffic conditions. We could then define two categorical
random variables denoting the presence/absence of sun and of traffic. What is
the relationship and probability of the events in such sample space? Figure 2.1
illustrates the sample space, the two events, and the (hypothetical) probability
measures by means of a Venn diagram and two different tabular representations.
The three representations in Figure 2.1 convey the same information in different
manners. Notwithstanding, they do not necessarily scale-up in the same manner if
we take into consideration a larger number of variables. For instance, for n binary
variables the Venn diagram should contain all 2n hypothetically possible outcomes1.

1see Wikipedia https://en.wikipedia.org/wiki/Venn_diagram

https://en.wikipedia.org/wiki/Venn_diagram
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Figure 2.2: Visualisation of three events and related probability measures: Venn
diagram (left), probability distribution table (right)

Suppose that you are also interested in another variable, i.e. the air quality.
Adding such a variable to your probability representation would make your Venn
representation more complicated and the two-way table inadequate (Figure 2.2).
The visualisation will still be more difficult to handle and interpret if we deal with
more than three variables.

Given their difficulty of encoding information in realistic probabilistic settings,
Venn diagrams are a pedagogical yet very limited tool for representing uncertainty.
This is the reason, why, apart form some exceptions, we will prefer to represent the
probability distribution by using the tabular format (Figure 2.2 right or Table 2.1).

2.2 The definition of probability

Once introduced the notion of probability, a major question remains still open: how
to compute the probability value Prob {E} for a generic event E? The assignment
of probabilities is perhaps the most difficult aspect of constructing probabilistic
models. Although the theory of probability is neutral, that is it can make inferences
regardless of the actual probability values, its results will be strongly affected by
the choice of a particular assignment. This means that if the assignments are
inaccurate, the predictions of the model will be misleading and will not reflect the
real behaviour of the modelled phenomenon. In the following sections, we are going
to present some procedures which are typically adopted in practice.

2.2.1 Symmetrical definition of probability

Consider a random experiment where the sample space is made of a finite number
M of symmetric outcomes (i.e., they are equally likely to occur). Let the number
of outcomes that are favourable to the event E (i.e. the event E takes place if one
of them occurs) be ME .

An intuitive definition of probability (also known as the classical definition) of
the event E , that adheres to the axioms, is

Prob {E} =
ME
M

(2.2.3)

In other words, according to the principle of indifference (a term popularised by
J.M. Keynes in 1921), we have that the probability of an event equals the ratio of its
favourable outcomes to the total number of outcomes provided that all outcomes are
equally likely [127]. The computation of this quantity requires combinatorial meth-
ods for counting the favourable outcomes. This is typically the approach adopted
for a fair die. Also, in most cases, the symmetric hypothesis is accepted as self-
evident: if a ball is selected at random from a bowl containing W white balls and B
black balls, the probability that we select a white one is W/(W +B).
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Note that this number is determined without any experimentation and is based
on symmetrical and finite space assumptions. But how to be sure that the symmet-
rical hypothesis holds? and that is invariant? Think, for instance, to the probability
that a newborn is a boy. Is this a symmetric case? More generally, how would one
define the probability of an event if the symmetrical hypothesis does not necessarily
hold or the space is not finite?

2.2.2 Frequentist definition of probability

Let us consider a random experiment and an event E . Suppose we repeat the
experiment N times and that we record the number of times NE that the event E
occurs. The quantity

NE
N

(2.2.4)

comprised between 0 and 1 is known as the relative frequency of E . It can be
observed that if the experiment is carried out a large number of times under exactly
the same conditions, the frequency converges to a fixed value for increasing N . This
observation led von Mises to use the notion of frequency as a foundation for the
notion of probability.

Definition 2.1 (von Mises). The probability Prob {E} of an event E is the limit

Prob {E} = lim
N→∞

NE
N

(2.2.5)

where N is the number of observations and NE is the number of times that E
occurred.

This definition appears reasonable, and it is compatible with the axioms in
Section 2.1.1. However, in practice, in any physical experience, the number N is
finite2, and the limit has to be accepted as a hypothesis, not as a number that can
be determined experimentally [127].

Moreover, the assumption under exactly the same conditions is not as innocuous
as it seems. How could you ensure that two experiments occur under exactly the
same conditions? And what do those conditions refer to? Temperature, humidity,
obsolescence of the equipment? Are humans really able to control exactly all of
them? Would you be able to reproduce the exact same conditions of an experiment?

Notwithstanding, the frequentist interpretation is very important to show the
links between theory and application as shown by the theoretical result in the
following section.

2.2.2.1 The Law of Large Numbers

A well-known justification of the frequentist approach is provided by the Weak Law
of Large Numbers, proposed by Bernoulli.

Theorem 2.2. Let Prob {E} = p and suppose that the event E occurs NE times in
N trials. Then, NE

N converges to p in probability, that is, for any ε > 0,

Prob

{∣∣∣∣NEN − p
∣∣∣∣ ≤ ε}→ 1 as N →∞

According to this theorem, the ratio NE/N is close to p in the sense that, for
any ε > 0, the probability that |NE/N − p| ≤ ε tends to 1 as N → ∞. This result
suggests the use of the frequency as estimation of p and justifies the widespread use

2As Keynes said ”In the long run we are all dead”.
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Figure 2.3: Fair coin-tossing random experiment: evolution of the relative frequency
(left) and of the absolute difference (right) between the number of heads and tails
(R script Probability/freq.R in gbcode).

of the frequentist approach (e.g. in Monte Carlo simulation) to illustrate or numer-
ically solve probability problems. The relation between frequency and probability
is illustrated by the Shiny dashboard lawlarge.R (package gbcode).

Note that such a result does not imply that the number NE will be close to Np
as one could naively infer from (2.2.5). In fact,

Prob {NE = Np} ≈ 1√
2πNp(1− p)

→ 0, as N →∞ (2.2.6)

For instance, in a fair coin-tossing game, this law does not imply that the ab-
solute difference between the number of heads and tails should oscillate close to
zero [157] (Figure 2.3). On the contrary, it could happen that the absolute differ-
ence keeps growing (though at a slower rate than the number of tosses) as shown
in the R script Probability/freq.R and the Shiny dashboard lawlarge.R.

2.2.3 Degree of belief and probability

The frequentist interpretation of probability relies on the availability of a number N
of observations. As such, it appears inadequate to represent the notion of probability
when it is used to model a subjective degree of belief. Think, for instance, to the
probability that your professor wins a Nobel Prize: how to define in such case a
number N of repetitions?

An important alternative interpretation of the probability measure comes then
from the Bayesian approach. This approach proposes a degree-of-belief interpreta-
tion of probability according to which Prob {E} measures an observer’s strength of
belief that E is or will be true [166]: think for instance of the subjective degree of
conviction of jurors who must judge a defendant on the basis of uncertain evidence3.

3Note that the subjective interpretation of probability relies on the strong assumption that
human belief and reasoning (i.e. belief manipulation) are coherent with the probabilistic calculus.
Now several works challenge this assumption [102]. Nevertheless, the ”Dutch book” argument
shows that a reasoning procedure that does not respect the probability rules would necessarily
lead to contradictions (and then irrationality). In other words, though probability is hardly the
way humans think, it is definitely the way they should if they want to be coherent.
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It follows that the Bayesian vision of probability is wider than the frequentist one
since it allows the integration of subjective beliefs and observed data. This is made
possible by the Bayes theorem (Section 2.6) which provide a formal way to revise
a priori belief in the light of new evidence (e.g. data). Though this is a powerful
reasoning engine, its weakness derives from the need of encoding in probabilistic
terms vague human information.

This manuscript will not cover the Bayesian approach to statistics and data
analysis for the sake of compactness, though the author is well aware that Bayesian
machine learning approaches are more and more common and successful. Readers
interested in the foundations of the Bayesian interpretation of probability are re-
ferred to [99]. Readers interested in introductions to Bayesian machine learning are
referred to [74, 13].

2.2.4 A pragmatic approach to probability

The history of probability has been characterised by a never ending controversy
between frequentist and bayesian supporters [14] about the interpretation of prob-
ability4.

In this book we will take a pragmatic approach where probability is consid-
ered as a mathematical model describing uncertainty in the real world for the sake
of performing reliable predictions. In this perspective, more than a definition of
probability, what is relevant here is (i) how to estimate such quantity from real
observations, (ii) how the accuracy of such estimation is related to observable out-
comes (e.g. predictions) and (iii) how useful is such estimation/prediction for our
purposes.

In this sense, it is interesting to menton the analogy in [127] between the notion
of probability and physical notions, like the one of resistance in electrical circuits.
Resistance (like probability) is just a useful abstraction of the behaviour of a resistor.
Arguing about its meaning is less relevant than stressing the added value it provides
when we reason about electricity and circuits configurations.

2.3 Independence and conditional probability

Let us consider two different events. We have already introduced the notions of
complementary and disjoint events. Another important definition is the definition
of independent events and the related notion of conditional probability. This notion
is essential in machine learning since supervised learning aims to detect and model
(in)dependencies by estimating conditional probabilities.

Definition 3.1 (Independent events). Two events E1 and E2 are independent if and
only if

Prob {E1 ∩ E2} = Prob {E1}Prob {E2} (2.3.7)

and we write E1 ⊥⊥ E2.

The probability Prob {E1 ∩ E2} of seeing two events occurring together is also
known as joint probability and often noted as Prob {E1, E2}. If two events are inde-
pendent, the joint probability depends only on the two individual probabilities. As
an example of two independent events, think of two outcomes of a roulette wheel
or of two coins tossed simultaneously.

From an uncertain reasoning perspective, independence is a very simplistic as-
sumption since the occurrence (or the observation) of one event has no influence

4We recommend this enlightening lecture on this topic http://videolectures.net/mlss09uk_

jordan_bfway/.

http://videolectures.net/mlss09uk_jordan_bfway/
http://videolectures.net/mlss09uk_jordan_bfway/
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on the occurrence of the other, or similarly that the second event has no memory
of the first. In other words, independence considers the uncertainty of a complex
joint event as a function of the uncertainties of its components5. This makes the
reasoning much simpler but, at the same time, too rough.

Exercise

Suppose that a fair die is rolled and that the number ω appears. Let E1 be the
event that the number ω is even, E2 be the event that the number ω is greater than
or equal to 3, E3 be the event that the number ω is a 4,5 or 6.

Are the events E1 and E2 independent? Are the events E1 and E3 independent?

•

Let E1 be an event such that Prob {E1} > 0 and E2 a second event. We define
the conditional probability of E2, given that E1 has occurred, the revised probability
of E2 after we learn about E1 occurrence:

Definition 3.2 (Conditional probability). If Prob {E1} > 0 then the conditional
probability of E2 given E1 is

Prob {E2|E1} =
Prob {E1 ∩ E2}

Prob {E1}
(2.3.8)

The following result derives from the definition of conditional probability.

Lemma 1. If E1 and E2 are independent events, then

Prob {E1|E2} = Prob {E1} (2.3.9)

In qualitative terms, the independence of two events means that the fact of
observing (or knowing) that one of these events (e.g. E1) occurred does not change
the probability that the other (e.g. E2) will occur.

Example

Let E1 and E2 two disjoint events with positive probability. Can they be indepen-
dent? The answer is no since

Prob {E1 ∩ E2} = Prob {∅} = 0 6= Prob {E1}Prob {E2} > 0

or equivalently Prob {E1|E2} = 0. We can interpret this result by noting that if
two events are disjoint, the realisation of one of them is highly informative about
the realisation of the other. For instance, though it is very probable that Italy
will win the next football World Cup (Prob {E1} >> 0) , this probability goes
to zero if the (rare yet possible) event E2 (”World cup won by Belgium”) occurs
(Prob {E1|E2} = 0). The two events are then dependent.

•

Exercise

Let E1 and E2 be two independent events, and Ec1 the complement of E1. Are Ec1
and E2 independent?

•
5We refer the interested reader to the distinction between extensional and intensional reasoning

in [131]. Extensional reasoning (e.g. logics) always makes an assumption of independence, while
intensional reasoning (e.g. probability) consider independence as an exception.
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Figure 2.4: Events in a sample space.

Example

Consider the sample space Ω and the two events E1 and E2 in Figure 2.4. Suppose
that the probability of the two events is proportional to the surface of the regions.
From the Figure 2.4 we derive

Prob {E1} =
9

100
= 0.09 (2.3.10)

Prob {E2} =
20

100
= 0.2 (2.3.11)

Prob {E1 ∩ E2} =
1

100
= 0.01 6= Prob {E1}Prob {E2} (2.3.12)

Prob {E1 ∪ E2} = 0.28 = Prob {E1}+ Prob {E2} − Prob {E1 ∩ E2} (2.3.13)

Prob {E1|E2} =
1

20
= 0.05 6= Prob {E1} (2.3.14)

Prob {E2|E1} =
1

9
6= Prob {E2} (2.3.15)

and then derive the following conclusions: the events E1 and E2 are neither disjoint
nor independent. Also, it is more probable that E2 occurs given that E1 occurred
rather than the opposite.

•

From (2.3.8) we derive

Prob {E1, E2} = Prob {E1}Prob {E2|E1} (2.3.16)

If we replace the event E2 with the intersection of two events E2 and E3, from (2.3.16)
we obtain

Prob {E1, E2, E3} = Prob {E1}Prob {E2, E3|E1} =

Prob {E1}Prob {E2|E3, E1}Prob {E3|E1} = Prob {E1, E3}Prob {E2|E3, E1}

If we divide both terms by Prob {E3} we obtain

Prob {E1, E2|E3} = Prob {E1|E3}Prob {E2|E1, E3} (2.3.17)

which is the conditioned version of (2.3.16).
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z1 z2 P(z1 = z1,z2 = z2)
Neg Neg 0.1
Neg Pos 0.2
Zero Neg 0.2
Zero Pos 0.1
Pos Neg 0.2
Pos Pos 0.2

Table 2.2: The events E1 (z1 positive) and E2 (z2 negative) are independent though
the two variables are dependent.

2.3.1 Independent variables

If we define the sample space in terms of variables (Section 2.1.2), it is interesting
to extend the notion of independence to variables. Let x and y be two random
variables taking categorical values in X and Y. The two variables x and y are
probabilistically independent if for all values of x and y

Prob {x = x,y = y} = Prob {x = x}Prob {y = y} , ∀x ∈ X , y ∈ Y

This means that we do not expect that the observation of a certain value of one
variable will affect the probability of observing a certain value of the other.

Note that in the sample space defined by two dependent variables we could nev-
ertheless find two independent events. Consider for instance the sample space in
Table 2.2, where the two events E1 (z1 positive) and E2 (z2 negative) are indepen-
dent.

2.4 The chain rule

The equation (2.3.16) shows that a joint probability can be factorised as the prod-
uct of a conditional and an unconditional probability. In more general terms, the
following rule holds.

Definition 4.1 (Chain rule). For any sequence of events E1, E2, . . . , En,

Prob {E1, E2, . . . , En} =

Prob {E1}Prob {E2|E1}Prob {E3|E1, E2} . . .Prob {En|E1, E2, . . . , En−1} (2.4.18)

It is also possible to write a conditioning version of (2.4.18) by considering an
event E ′:

Prob {E1, E2, . . . , En|E ′} =

Prob {E1|E ′}Prob {E2|E1, E ′}Prob {E3|E1, E2, E ′} . . .Prob {En|E1, E2, . . . , En−1, E ′}
(2.4.19)

It follows that, given three events E1, E2, E3 it is possible to write down the
multiplication law of probability

Prob {E1, E2|E3} = Prob {E1|E3}Prob {E2|E1, E3} = Prob {E2|E3}Prob {E1|E2, E3}

which satisfies commutativity.
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2.5 The law of total probability

Let us consider an indeterminate practical situation where a set of events E1, E2,...,
Ek may occur. Suppose that no two such events may occur simultaneously, but at
least one of them must occur. This means that E1, E2,..., Ek are mutually exclusive
and exhaustive or, in other terms, that they form a partition of Ω. The following
theorem can be proven.

Theorem 5.1 (Law of total probability). Let Prob {Ei}, i = 1, . . . , k denote the
probability of the ith event Ei and Prob {E|Ei}, i = 1, . . . , k the conditional probability
of a generic event E given that Ei has occurred. It can be shown that

Prob {E} =

k∑
i=1

Prob {E|Ei}Prob {Ei} =

k∑
i=1

Prob {E ∩ Ei} (2.5.20)

The quantity Prob {E} is referred to as marginal probability and denotes the
probability of the event E irrespective of the occurrence of other events. A com-
monsense interpretation of this theorem is that if an event E (e.g. an effect) depends
on the realisation of k disjoint events (e.g. causes), the probability of observing E ,
is a weighted average of each single conditional probability Prob {E|Ei} where the
weights are given by the marginal probabilities of each event Ei, i = 1, . . . , k.

In its simplest version, given a generic event E1, we can compute the probability
of another event E as

Prob {E} = Prob {E|E1}Prob {E1}+ Prob {E|Ec1}Prob {Ec1} (2.5.21)

where Ec1 is the complement of E16. For instance, we can compute the probability
that the highway is busy (event E) once we know the probability that an accident
occurred (event E1) or not (complement Ec1) and the conditional probabilities of
traffic given the occurrence (or not) of an accident.

It may be useful also to write a conditioning version of the total probability.
Given an event E ′ and the set E1, E2, . . . , Ek of mutually exclusive events:

Prob {E|E ′} =

k∑
i=1

Prob {E|Ei, E ′}Prob {Ei|E ′} (2.5.22)

2.6 The Bayes’ theorem

The Bayes’ theorem is the mathematical version of the formula first proved by the
Reverend Thomas Bayes in 1763 and represents the cornerstone of the probabilistic
calculus since it formalises the relationship between a direct conditional probability
Prob {E|Ei} and its inverse Prob {Ei|E}.

Theorem 6.1 (Bayes’ theorem). The conditional “inverse” probability of any Ei,
i = 1, . . . , k given that E has occurred is given by

Prob {Ei|E} =
Prob {E|Ei}Prob {Ei}∑k
j=1 Prob {E|Ej}Prob {Ej}

=
Prob {E , Ei}

Prob {E}
i = 1, . . . , k

(2.6.23)

6Note that from (2.5.21) it follows that Prob {E} = Prob {E|E1} = Prob
{
E|Ec1

}
(i.e. E is

independent of E1) if and only if Prob {E|E1} = Prob
{
E|Ec1

}
.
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It follows that the Bayes theorem is the only sound way to derive from a condi-
tional probability Prob {E2|E1} its inverse

Prob {E1|E2} =
Prob {E2|E1}Prob {E1}

Prob {E2}
=

=
Prob {E2|E1}Prob {E1}

Prob {E2|E1}Prob {E1}+ Prob {E2|Ec1}Prob {Ec1}
(2.6.24)

Any alternative derivation (or shortcut) will lead inevitably to fallacious reason-
ing and inconsistent results (see the Prosecutor fallacy discussion in Section 2.7).
Note that the Bayes’ theorem can also be interpreted as a manner of updating the
marginal probability Prob {E1} to the conditional version Prob {E1|E2} that is the
probability of E1 once the event E2 occurred. In subjectivist terms the Bayes’ the-
orem is a rule for updating the degree of belief of E1 once new evidence (i.e. the
event E2) is obtained.

From (2.6.24) and by conditioning on a third event E3, we obtain a conditioning
version of the Bayes theorem

Prob {E1|E2, E3} =
Prob {E2|E1, E3}Prob {E1|E3}

Prob {E2|E3}
(2.6.25)

as long as Prob {E2|E3} > 0.

Example

Suppose that k = 2 and

• E1 is the event: “Tomorrow is going to rain”.

• E2 is the event: “Tomorrow is not going to rain”.

• E is the event: “Tonight is chilly and windy”.

The knowledge of Prob {E1}, Prob {E2} and Prob {E|Ek}, k = 1, 2 makes possible
the computation of Prob {Ek|E}.

•

Exercise

Verify the validity of the law of total probability and of the Bayes theorem for the
problem in Figure 2.5.

•

2.7 Direct and inverse conditional probability

The notion of conditional probability is central in probability and machine learning,
but it is often prone to dangerous misunderstanding, for instance, when inappropri-
ately used in domains like medical sciences or law. The most common error consists
of taking a conditional probability Prob {E1|E2} for its inverse Prob {E2|E1}. This
is also known as the prosecutor fallacy, as discussed in an example later.

The first important element to keep in mind is that for any fixed E1, the quantity
Prob {·|E1} still satisfies the axioms of probability, i.e. the function Prob {·|E1} is it-
self a probability measure. Conditional probabilities are probabilities [27]. However,
this does not generally hold for Prob {E1|·}, which corresponds to fix the term E1
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Figure 2.5: Events in a sample space

on the left of the conditional bar. For instance, if E2, E3 and E4 are disjoint events
we have

Prob {E2 ∪ E3 ∪ E4|E1} = Prob {E2|E1}+ Prob {E3|E1}+ Prob {E4|E1}

in agreement with the third axiom (Section 2.1.1) but

Prob {E1|E2 ∪ E3 ∪ E4} 6= Prob {E1|E2}+ Prob {E1|E3}+ Prob {E1|E4}

Also it is generally not the case that Prob {E2|E1} = Prob {E1|E2}. As a conse-
quence if E1 and E2 are not independent then

Prob {Ec1 |E2} = 1− Prob {E1|E2}

but

Prob {E1|Ec2} 6= 1− Prob {E1|E2} (2.7.26)

where Ec denotes the complement of E .

Another remarkable property of conditional probability, which is also a dis-
tinctive aspect of probabilistic reasoning, is its non-monotonic property. Given a
non-conditional probability Prob {E1} > 0 a priori, we cannot say anything about
the conditional term Prob {E1|E2}. This term can be larger, equal or smaller than
Prob {E1}. For instance, if observing the event E2 makes the event more (less) prob-
able then Prob {E1|E2} > Prob {E1} (Prob {E1|E2} < Prob {E1} ). If the two events
are independent, then the probability of E1 does not change by conditioning. It
follows that the degree of belief of an event (or statement) depends on the context.
Note that this does not apply to conventional logical reasoning where the validity
of a statement is context-independent.

In more general terms, it is possible to say that any probability statement is con-
ditional since it has been formulated on the basis of an often implicit background
knowledge K. For instance, if we say that the probability of the event E =”rain
tomorrow” is Prob {E} = 0.9, we are implicitly taking into consideration the sea-
son, our location and probably the weather today. So we should better note it as
Prob {E|K} = 0.9. As succinctly stated in [27] all probabilities are conditional, and
conditional probabilities are probabilities.
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Italians

football supporters

World population

Figure 2.6: Italians and football fans.

Exercise

Consider as sample space Ω the set of all human beings. Let us define two events:
the set E1 of Italians and the set E2 of football supporters. Suppose that the prob-
ability of the two events is proportional to the surface of the regions in Figure 2.6.
Are these events disjoint? Are they independent? What about Prob {E1|E2} and
Prob {E2|E1}? Are they equal? If not, which one is the largest?

•

The prosecutor fallacy

Consider the following story: A crime occurs in a big city (1M of inhabitants), and
a deteriorated DNA trace of the murderer is collected. The DNA profile matches
the profile of a person in a police database. A geneticist is contacted, and she states
that the probability of finding a person with the same DNA profile is one out of
100 thousand (i.e. 1e − 5). The prosecution lawyer asks for condemnation with
the following argument: ”since the chance of finding an innocent man with such
characteristics is so tiny, then the probability that he is innocent will be tiny as well”.
The jury is impressed and ready to proceed with a life sentence. Then the defendant
replies: ”Do you know that the population of the city is 1M? So the average number
of persons matching such DNA profile is 10. His chance of being innocent is not so
tiny since it is 9/10 and not one in 100000” Lacking any additional evidence, the
suspect is acquitted.

This short story is inspired by a number of real cases in court that were con-
fronted with the serious error of confounding direct and inverse conditional probabil-
ity [147]. The impact of such false reasoning is so relevant in law that it is known as
the Prosecutor’s fallacy, a common default in reasoning when the collected evidence
is tiny if the accused was innocent.

Let us analyse in probabilistic terms the fallacious reasoning that occurred in
the example above. Let consider a criminal case for which we have 10 suspects, i.e.
the responsible and 9 innocent persons (out of a 1 million population) matching
the DNA profile. The probability of matching evidence (M) given that someone is
innocent (I) is very low

Prob {M |I} =
9

999999
≈ 1e− 5
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However, what is relevant here is not the probability of the evidence given that he
is innocent (Prob {M |I}) but the probability that is innocent given the evidence

Prob {I|M} =
Prob {M |I}Prob {I}

Prob {M}
=

9/999999× 999999/1000000

10/1000000
= 9/10.

We can rephrase the issue in the following frequentist terms. Given N inhabi-
tants, m persons with DNA matching profiles and a single murderer, the following
table shows the distribution of persons

Match No match
Innocent m− 1 N −m
Guilty 1 0

From the table above, it is easy to derive the inconsistency of the prosecutor fallacy
reasoning since

Prob {M |I} =
m− 1

N − 1
≈ Prob {M} =

m

N

Prob {I|M} =
m− 1

m
>> Prob {M |I}

•

Example: dependent/independent scenarios

Let us study the dependence between an ULB student commute time (denoted by
the categorical variable z1) and the weather in Brussels (denoted by the categorical
variable z2). Suppose that z1 takes value in {LOW,MEDIUM,HIGH}. and z2

in {G = GOOD,B = BAD}. Suppose that the array of joint probabilities is

z2 =G (in Bxl) z2 =B (in Bxl) Marginal

z1 =LOW 0.15 0.05 Prob {LOW} = 0.2
z1 =MEDIUM 0.1 0.4 Prob {MEDIUM} = 0.5

z1 =HIGH 0.05 0.25 Prob {HIGH} = 0.3

Prob {G} = 0.3 Prob {B} = 0.7 Sum=1

According to the above probability function, is the commute time dependent on
the weather in Bxl? Note that if the weather is good

LOW MEDIUM HIGH

Prob {·|G} 0.15/0.3=0.5 0.1/0.3=0.33 0.05/0.3=0.16

Else if the weather is bad

LOW MEDIUM HIGH
Prob {·|B} 0.05/0.7=0.07 0.4/0.7=0.57 0.25/0.7=0.35

Since Prob {·|G} 6= Prob {·|B}, i.e. the probability of having a certain commute time
changes according to the value of the weather, the relation (2.3.9) is not satisfied.

Now consider the dependency between the commute time in Brussels and the
weather in Rome (denoted by the categorical variable z3).

z3 =G (in Rome) z3 =B (in Rome) Marginal

z1 =LOW 0.18 0.02 Prob {LOW} = 0.2
z1 =MEDIUM 0.45 0.05 Prob {MEDIUM} = 0.5

z1 =HIGH 0.27 0.03 Prob {HIGH} = 0.3

Prob {G} = 0.9 Prob {B} = 0.1 Sum=1

Our question now is: is the commute time dependent on the weather in Rome?
If the weather in Rome is good, we obtain
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LOW MEDIUM HIGH
Prob {·|G} 0.18/0.9=0.2 0.45/0.9=0.5 0.27/0.9=0.3

while if the weather in Rome is bad

LOW MEDIUM HIGH
Prob {·|B} 0.02/0.1=0.2 0.05/0.1=0.5 0.03/0.1=0.3

Note that the probability of the commute time does NOT change according to the
value of the weather in Rome, e.g. Prob {LOW|B} = Prob {LOW}. Now try to
answer the following question. If you would like to predict the commute time in
Brussels, which variable would return more information on it: the weather in Rome
or in Brussels?

•

Example: a medical study [166]

Let us consider a medical study about the relationship between the outcome of
a medical test and the presence of a disease. We model the sample space as the
product set of two categorical random variables:

1. the state of the patient z1 taking value in {H,S} where H and S stand for a
healthy and a sick patient, respectively.

2. the outcome of the medical test z2 taking value in {+,−}, where + and −
stand for a positive and a negative outcome of the test, respectively.

The dependency between the state of the patient and the outcome of the test
can be studied in terms of conditional probability.

Suppose that out of 1000 patients, 108 respond positively to the test and that
among them, 9 result to be affected by the disease. Also, among the 892 patients
who responded negatively to the test, only 1 is sick. According to the frequentist
interpretation, the probabilities of the joint events Prob {z1 = z1, z2 = z2} can be
approximated according to the expression (2.2.5) by

z1 = S z1 = H
z2 = + 9

1000 = .009 108−9
1000 = .099

z2 = − 1
1000 = .001 892−1

1000 = .891

Doctors are interested in answering the following questions. What is the proba-
bility of having a positive (negative) test outcome when the patient is sick (healthy)?
What is the probability of being in front of a sick (healthy) patient when a positive
(negative) outcome is obtained? From the definition of conditional probability we
derive

Prob {z2 = +|z1 = S} =
Prob {z2 = +, z1 = S}

Prob {z1 = S}
=

.009

.009 + .001
= .9

Prob {z2 = −|z1 = H} =
Prob {z2 = −, z1 = H}

Prob {z1 = H}
=

.891

.891 + .099
= .9

According to these figures, the test appears to be accurate. Does this mean that
we should be scared if we test positive? Though the test is accurate, the answer is
negative, as shown by the quantity

Prob {z1 = S|z2 = +} =
Prob {z2 = +, z1 = S}

Prob {z2 = +}
=

.009

.009 + .099
≈ .08

This example confirms that sometimes humans tend to confound Prob {z1|z2} with
Prob {z2|z1} and that the most intuitive response is not always the right one (see
example in Section 2.7).
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z1 z2 z3 P(z1 = z1,z2 = z2,z3 = z3)
CLEAR RISING DRY 0.4
CLEAR RISING WET 0.07
CLEAR FALLING DRY 0.08
CLEAR FALLING WET 0.10

CLOUDY RISING DRY 0.09
CLOUDY RISING WET 0.11
CLOUDY FALLING DRY 0.03
CLOUDY FALLING WET 0.12

Table 2.3: Joint probability distribution of the three-variable probabilistic model of
the weather

•

Example: probabilistic weather

Consider a probabilistic model of the day’s weather based on the sample space
in Table 2.1. Let the joint probability values be given by Table 2.3. From the
joint values, we can calculate the probabilities P (CLEAR,RISING) = 0.47 and
P (CLOUDY ) = 0.35 and the conditional probability value

P (DRY |CLEAR,RISING) =
P (DRY,CLEAR,RISING)

P (CLEAR,RISING)
=

0.40

0.47
≈ 0.85

Take the time now to compute yourself other probabilities: for instance what is
the probability of having a cloudy sky in wet conditions? Does a rising barometer
increase or not this probability? Is the event ”clear sky and falling barometer”
independent from the event ”dry weather”?

•

2.8 Probability as Odds

Though probability is a conventional way to represent uncertainty or risk, humans
(e.g. gamblers) often prefer to reason about risks in terms of odds rather than
probability. Given the event E , its odds ratio can be written as a function of the
probability Prob {E} in the following manner

OR {E} =
Prob {E}
Prob {Ec}

=
Prob {E}

1− Prob {E}
(2.8.27)

Note that if OR {E} = a/b then Prob {E} = a/(a+ b). For instance, in betting
jargon, if an event (e.g. Italy’s victory at the next World Cup) is given ”10:1”, this
means that it is ten times more likely to happen than not and its probability is
10/11.

Using odds-ratio can be convenient also to formalise the impact of an observed
evidence E on the probability (or degree of belief) that an hypothesis H (e.g. a
defendant is innocent) be true. From the Bayes theorem (2.6.24), it is easy to derive

Prob {H|E}
Prob

{
H̄|E

} =
Prob {E|H}
Prob

{
E|H̄

} Prob {H}
Prob

{
H̄
} ⇒ OR(H|E) =

Prob {E|H}
Prob

{
E|H̄

}OR(H)

where H̄ is the complement of H and
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• Prob{H|E}
Prob{H̄|E} is the posterior odds ratio (i.e. the odds in favour of the hypothesis

H after the evidence has been presented),

• Prob{H}
Prob{H̄} is the prior odds ratio (i.e. the odds in favour of the hypothesis H

before the evidence has been presented) and

• Prob{E|H}
Prob{E|H̄} is also known as the likelihood ratio.

Exercise

Suppose for instance that you want to assess the hypothesis H that if your pro-
fessor is Italian and that you suspect already something on the basis of his accent
(Prob {H} = 0.6).

You also know that the love of Italians for football (E) is higher than in the rest of
the world. and you translate that into the probabilistic relation Prob {E|H} = 0.9
and Prob

{
E|H̄

}
= 0.5. How would your belief change if you realise that he is a

supporter of Fiorentina?

•

2.9 Logics and probabilistic reasoning

This section aims to present some interesting relationships between logic deduction
and probabilistic reasoning.

First, we show that we can write down a probabilistic version of the deductive
modus ponens rule of propositional logic :

If E1 ⇒ E2 and E1 is true, then E2 is true as well.
Since E1 ⇒ E2 is equivalent in set terms to E1 ⊂ E2 we obtain

Prob {E2|E1} =
Prob {E1, E2}

Prob {E1}
=

Prob {E1}
Prob {E1}

= 1

i.e. a translation of the modus ponens argument in the probabilistic language.
Interestingly enough, the probability theory provides us with a result also in the
case of true E2. It is well-known that in propositional logic if E1 ⇒ E2 and E2 is
true, then nothing can be inferred about E1. Probability theory is more informative
since in this case we may derive from E2 ⊂ E1 that

Prob {E1|E2} =
Prob {E1}
Prob {E2}

≥ Prob {E1}

Note that this is a probabilistic formulation of the abduction principle . In other
words, probability supports the following commonsense reasoning: if both E1 ⇒ E2
and E2 apply, then the conditional probability of E1 (i.e. the probability of E1 once
we know that E2 occurred) cannot be smaller than the unconditional probability
(i.e. the probability of E1 if we knew nothing about E2).

Also the properties of transitivity and inverse modus ponens hold in probability.
Let us consider three events E1, E2, E3. The transitivity principle in logic states that

If E1 ⇒ E2 and E2 ⇒ E3 then E1 ⇒ E3
In probabilistic terms we can rewrite E1 ⇒ E2 as

Prob {E2|E1} = 1

and E2 ⇒ E3 as
Prob {E3|E2} = 1
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respectively. From the law of total probability (Equation (2.5.20)) we obtain

Prob {E3|E1} = Prob {E3|E2, E1}Prob {Ec2 |E1}︸ ︷︷ ︸
0

+ Prob {E3|E2, E1}︸ ︷︷ ︸
1

Prob {E2|E1}︸ ︷︷ ︸
1

= 1

Inverse modus ponens in logic states that
If E1 ⇒ E2 then ¬E2 ⇒ ¬E1

In probabilistic terms from Prob {E2|E1} = 1 it follows

Prob {Ec1 |Ec2} = 1 − Prob {E1|Ec2} = 1 −

Prob {Ec2 |E1}︸ ︷︷ ︸
0

Prob {E1}

Prob {Ec2}
= 1

Those results show that deductive logic rules can be seen as limiting cases of proba-
bilistic reasoning and confirm the compatibility of probability reasoning with human
common sense.

2.10 Random numeric variables

Machine learning and statistics are concerned with numeric data and measurements
while so far we have mainly been dealing with events and categorical variables.
What is then the link between the notion of random experiment and data? The
answer is provided by the concept of random variable.

Consider a random experiment and the associated triple (Ω, {E},Prob {·}). Sup-
pose that we have a mapping rule z : Ω→ Z ⊂ R such that we can associate with
each experimental outcome ω a real value z = z(ω) in the domain Z. We say that
z is the value taken by the random variable z when the outcome of the random
experiment is ω. Henceforth, in order to clarify the distinction between a random
variable and its value, we will use the boldface notation for denoting a random
variable (as in z) and the normal face notation for the eventually observed value
(as in z = 11).

Since there is a probability associated with each event E and we have a mapping
from events to real values, a probability distribution can be associated with z.

Definition 10.1 (Random numeric variable). Given a random experiment (Ω, {E},Prob {·}),
a random variable z is the result of a mapping z : Ω→ Z that assigns a number z
to every outcome ω. This mapping must satisfy the following two conditions:

• the set {z ≤ z} is an event for every z.

• the probabilities

Prob {z =∞} = 0 Prob {z = −∞} = 0

Given a random variable z ∈ Z and a subset I ⊂ Z we define the inverse
mapping

z−1(I) = {ω ∈ Ω|z(ω) ∈ I} (2.10.28)

where z−1(I) ∈ {E} is an event. On the basis of the above relation, we can associate
a probability measure to z according to

Prob {z ∈ I} = Prob
{
z−1(I)

}
= Prob {ω ∈ Ω|z(ω) ∈ I} (2.10.29)

Prob {z = z} = Prob
{
z−1(z)

}
= Prob {ω ∈ Ω|z(ω) = z} (2.10.30)

In other words, a random numeric variable is a numerical quantity, linked to
some experiment involving some degree of randomness, which takes its value from



2.11. DISCRETE RANDOM VARIABLES 45

some set Z of possible real values. The notion of r.v. formalises the notion of
numeric measurements, which is indeed a mapping between an event (e.g. your
body temperature) and a number (e.g. in the range Z = {35, . . . , 41} returned
by the thermometer). Another experiment might be the rolling of two six-sided
dice and the r.v. z might be the sum (or the maximum) of the two numbers
showing in the dice. In this case, the set of possible values is Z = {2, . . . , 12} (or
Z = {1, . . . , 6}). In what follows, unless explicitly stated, we will use the term
random variables to refer to random numeric variables.

Example

Suppose that we have to decide when to go home and watch Fiorentina AC playing
the Champion’s League final match against Anderlecht. In order to make such a
decision, a quantity of interest is the (random) commute time z for getting from
ULB to home. Our personal experience is that this time is a positive number
that is not constant: for example, z1 = 10 minutes, z2 = 23 minutes, z3 = 17
minutes, where zi is the time taken on the ith day of the week. The variability
of this quantity is related to a complex random process with a large sample space
Ω (depending, for example, on the weather conditions, the weekday, the sports
events in town, and so on). The probabilistic approach uses a random variable to
represent this uncertainty and considers each measure zi as the consequence of a
random outcome ωi. The use of a random variable z to represent the commute
time becomes then a compact (and approximate) way of modelling the disparate set
of causes underlying the uncertainty of this phenomenon. Whatever its limits, the
probabilistic representation provides us with a computational way to decide when
to leave if we want to bound the probability of missing the start of the match.

•

2.11 Discrete random variables

A discrete random variable z is an uncertain quantity that can take a discrete
number of mutually exclusive and exhaustive values in Z. Its probability (mass)
function is the combination of

1. the countable set Z of values that the r.v. can take (also called range),

2. the set of probabilities associated to each value of Z.

This means that we can attach to the random variable some specific mathemat-
ical function Pz(z) that gives for each z ∈ Z the probability that z assumes the
value z

Pz(z) = Prob {z = z} (2.11.31)

This function is called probability function or probability mass function. Note that
hereafter we will use P (z) as a shorthand for Prob {z = z} when the identity of the
random variable is clear from the context.

As depicted in the following example, the probability function can be tabulated
for a few sample values of z. If we toss a fair coin twice, and the random variable
z is the number of heads that eventually turn up, the probability function can be
tabulated as follows

Values of the random variable z 0 1 2

Associated probabilities 0.25 0.50 0.25
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2.11.1 Parametric probability function

Sometimes the probability function is not precisely known but can be expressed as
a function of z and a quantity θ. An example is the discrete r.v. z that takes its
value from Z = {1, 2, 3} and whose probability function is

Pz(z, θ) =
θ2z

θ2 + θ4 + θ6

where θ is some fixed nonzero real number.
Whatever the value of θ, Pz(z) > 0 for z = 1, 2, 3 and Pz(1)+Pz(2)+Pz(3) = 1.

Therefore z is a well-defined random variable, even if the value of θ is unknown.
We call θ a parameter, that is some constant, usually unknown, involved in the
analytical expression of a probability function. We will see in the following that the
parametric form is a convenient way to formalise a family of probabilistic models
and that the problem of estimation can be seen as a parameter identification task.

2.11.2 Expected value, variance and standard deviation of a
discrete r.v.

Though the probability function Pz provides a complete description of the uncer-
tainty of z, the use of quantity is often impractical since it requires to deal with as
many values as the size of Z. In practice, it is more convenient to deal with some
compact representations of Pz obtained by computing a functional (i.e. a function
of a function) of Pz. The most common single-number summary of the distribution
Pz is the expected value which is a measure of central tendency7.

Definition 11.1 (Expected value). The expected value of a discrete random variable
z is

E[z] = µ =
∑
z∈Z

zPz(z) (2.11.32)

assuming that the sum is well-defined.

An interesting property of the expected value is that it is the value which min-
imises the squared deviation

µ = arg min
m

E[(z−m)2] (2.11.33)

Note that:

• the expected value is a theoretical notion which assumes the existence of a
probability function Pz;

• the expected value is defined without reference to any particular sample;

• the expected value does not necessarily belong to the domain Z of the random
variable;

• in this book the term mean is used as a synonym of expected value;

• the term average is not a synonymous of expected value since it refers to a
particular sample. In particular, given an r.v. z it exists a single E[z] but
there can be as many samples (and averages) as we like.

We will discuss in detail the difference between mean and sample average in Sec-
tion 3.3.2.

7This concept was first introduced in the 17th century by C. Huygens in order to study the
games of chance
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Figure 2.7: Two discrete probability functions with the same mean and different
variance

Example [157]

Let us consider a European roulette with numbers 0, 1, . . . , 36 and where the number
0 is considered as winning for the house. The gain of a player who places a 1$ bet
on a single number is a random variable z whose sample space is Z = {−1, 35}. In
other words, only two outcomes are possible: either she wins z1 = −1$ (or better
he loses 1$) with probability p1 = 36/37 or he wins z2 = 35$ with probability
p2 = 1/37. The expected gain is then

E[z] = p1z1 + p2z2 = p1 ∗ (−1) + p2 ∗ 35 = −36/37 + 35/37 = −1/37 = −0.027

This means that while casinos gain on average 2.7 cents for every staked dollar,
players on average are giving away 2.7 cents (whatever sophisticated their betting
strategy is).

•

A common way to summarise the spread of a distribution is provided by the
variance.

Definition 11.2 (Variance). The variance of a discrete random variable z is

Var [z] = σ2 = E[(z− E[z])2] =
∑
z∈Z

(z − E[z])2Pz(z)

The variance is a measure of the dispersion of the probability function of the
random variable around its mean µ. Note that the following relation holds

σ2 = E[(z− E[z])2] = E[z2 − 2zE[z] + (E[z])2] (2.11.34)

= E[z2]− (E[z])2 = E[z2]− µ2 (2.11.35)

whatever is the probability function of z. Figure 2.7 illustrate two examples of
discrete r.v. probability functions that have the same mean but different variance.
Note that the variance Var [z] does not have the same dimension as the values of z.
For instance, if z is measured in the unit [m], Var [z] is expressed in the unit [m]2.
Standard deviation is a measure for the spread that has the same dimension as z .
An alternative measure of spread is E[|z − µ|] but this quantity is less used since
more difficult to be analytically manipulated than the variance.

Definition 11.3 (Standard deviation). The standard deviation of a discrete random
variable z is the positive square root of the variance.

Std [z] =
√

Var [z] = σ
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Figure 2.8: A discrete probability function with positive skewness (left) and one
with a negative skewness (right).

Example

Let us consider a binary random variable z ∈ Z = {0, 1} where Pz(1) = p, 0 ≤ p ≤ 1
and Pz(0) = 1− p. In this case

E[z] = p ∗ 1 + 0 ∗ (1− p) = p (2.11.36)

E[z2] = p ∗ 1 + 0 ∗ (1− p) = p (2.11.37)

Var [z] = E[z2]− (E[z])2 = p− p2 = p(1− p) (2.11.38)

•

Definition 11.4 (Moment). For any positive integer r, the rth moment of the
probability function is

µr = E[zr] =
∑
z∈Z

zrPz(z) (2.11.39)

Note that the first moment coincides with the mean µ, while the second moment
is related to the variance according to Equation (2.11.34). Higher-order moments
provide additional information, other than the mean and the spread, about the
shape of the probability function.

Definition 11.5 (Skewness). The skewness of a discrete random variable z is de-
fined as

γ =
E[(z− µ)3]

σ3
(2.11.40)

Skewness is a parameter that describes asymmetry in a random variable’s prob-
ability function. Probability functions with positive skewness have long tails to the
right, and functions with negative skewness have long tails to the left (Figure 2.8).

Definition 11.6 (Kurtosis). The kurtosis of a discrete random variable z is defined
as

κ =
E[(z− µ)4]

σ4
(2.11.41)

Kurtosis is always positive. Its interpretation is that the probability function
of a distribution with large kurtosis has fatter tails, compared with the probability
function of a distribution with smaller kurtosis.
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2.11.3 Entropy and relative entropy

Definition 11.7 (Entropy). Given a discrete r.v. z, the entropy of the probability
function Pz(z) is defined by

H(z) = −
∑
z∈Z

Pz(z) logPz(z)

H(z) is a measure of the unpredictability of the r.v. z. Suppose that there are
M possible values for the r.v. z. The entropy is maximised (and takes the value
logM) if Pz(z) = 1/M for all z. It is minimised iff P (z) = 1 for a single value of z
(i.e. all other probability values are null).

Although the entropy measures (like the variance) the uncertainty of an r.v., it
differs from the variance since it depends only on the probabilities of the different
values and not on the values themselves. In other terms, H can be seen as a function
of the probability function Pz rather than of z.

Let us now consider two different discrete probability functions on the same set
of values

P0 = Pz0
(z), P1 = Pz1

(z)

where P0(z) > 0 if and only if P1(z) > 0. The relative entropies (or the Kullback-
Leibler divergences) associated with these two functions are

H(P0||P1) = KL(P0, P1) =
∑
z

P0(z) log
P0(z)

P1(z)
=
∑
z

P0(z) logP0(z)−
∑
z

P0(z) logP1(z)

(2.11.42)

H(P1||P0) = KL(P1, P0) =
∑
z

P1(z) log
P1(z)

P0(z)
=
∑
z

P1(z) logP1(z)−
∑
z

P1(z) logP0(z)

(2.11.43)

where the term
−
∑
z

P0(z) logP1(z) = −Ez∼P0 [logP1] (2.11.44)

is also called the cross-entropy. These asymmetric quantities measure the dissimi-
larity between the two probability functions. A symmetric formulation of the dis-
similarity is provided by the divergence quantity

J(P0, P1) = H(P0||P1) +H(P1||P0).

2.12 Continuous random numeric variable

An r.v. z is said to be a continuous random numeric variable if it can assume any
of the infinite values within a range of real numbers. The following quantities can
be defined:

Definition 12.1 (Cumulative distribution function). The (cumulative) distribution
function of z is the function Fz : R→ [0, 1]

Fz(z) = Prob {z ≤ z} (2.12.45)

This function satisfies the following two conditions:

1. it is right continuous: Fz(z) = limy→z Fz(y),

2. it is non-decreasing: z1 < z2 implies Fz(z1) ≤ Fz(z2),
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3. it is normalised, i.e.

lim
z→−∞

Fz(z) = 0, lim
z→∞

Fz(z) = 1

Definition 12.2 (Density function). The density function of a real random variable
z is the derivative of the distribution function

pz(z) =
dFz(z)

dz
(2.12.46)

at all points z where Fz(·) is differentiable.

Probabilities of continuous r.v. are not allocated to specific values but rather to
an interval of values. Specifically

Prob {a ≤ z ≤ b} =

∫ b

a

pz(z)dz,

∫
Z
pz(z)dz = 1

Some considerations about continuous r.v. are worthy to be mentioned:

• the quantity Prob {z = z} = 0 for all z,

• the quantity pz(z) can be bigger than one (since it is a density and not a
probability) and even unbounded,

• two r.v.s z1 and z2 with the same domain Z are equal in distribution if
Fz1

(z) = Fz1
(z) for all z ∈ Z.

Note that hence after we will use p(z) as a shorthand for pz(z) when the identity
of the random variable is clear from the context.

2.12.1 Mean, variance, moments of a continuous r.v.

Consider a continuous scalar r.v. with range Z = (l, h) and density function p(z).
We may define the following quantities.

Definition 12.3 (Expectation or mean). The mean of a continuous scalar r.v. z
is the scalar value

µ = E[z] =

∫ h

l

zp(z)dz (2.12.47)

Definition 12.4 (Variance). The variance of a continuous scalar r.v. z is the scalar
value

σ2 = E[(z− µ)2] =

∫ h

l

(z − µ)2p(z)dz (2.12.48)

Definition 12.5 (Moments). The r-th moment of a continuous scalar r.v. z is the
scalar value

µr = E[zr] =

∫ h

l

zrp(z)dz (2.12.49)

Note that the moment of order r = 1 coincides with the mean of z.

Definition 12.6 (Quantile function). Given the cumulative function Fz, the quan-
tile (or inverse cumulative) function is the function F−1

z : [0, 1]→ R such that

F−1
z (q) = inf{z : Fz(z) > q}

The quantities Fz(1/4), Fz(1/2), Fz(3/4) are called the first quartile, the median
and the third quartile, respectively.
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Figure 2.9: Cumulative distribution function and upper critical point.

Definition 12.7 (Upper critical point). For a given 0 ≤ α ≤ 1 the upper critical
point of a continuous r.v. z is the value zα such that

1− α = Prob {z ≤ zα} = F (zα)⇔ zα = F−1(1− α)

Figure 2.9 shows an example of cumulative distribution together with the upper
critical point. A compact review of univariate discrete and continuous distributions
is available in Appendix D.1. In what follows we will detail only the univariate
normal case.

2.12.2 Univariate Normal (or Gaussian) distribution

A continuous scalar random variable x is said to be normally distributed with pa-
rameters µ and σ2 (also x ∼ N (µ, σ2)) if its probability density function is Normal
(or Gaussian). The analytical form of a Normal probability density function is

px(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2.12.50)

where the coefficient before the exponential ensures that
∫
px(x)dx = 1. The mean

of the Normal random variable x is µ and its variance is σ2. An interesting property
of a normal r.v.is that the probability that an observation x is within 1 (2) standard
deviations from the mean is 0.68 (0.95). You may find more probabilistic relation-
ships in Table 2.4. When µ = 0 and σ2 = 1 the distribution is called standard
normal (Figure 2.10) and its distribution function is denoted Fz(z) = Φ(z). All
random variables x ∼ N (µ, σ2) are linked to a standard variable z by the following
relation

z = (x− µ)/σ. (2.12.51)

It follows that z ∼ N (0, 1)⇒ x = µ+ σz ∼ N (µ, σ2).
The practitioner might now wonder why the Normal distribution is so ubiqui-

tous in statistics books and literature. There are plenty of reasons both from the
theoretical and the practical side. From a theoretical perspective, the adoption of a
Normal distribution is justified by the Central Limit theorem (Appendix D.8) which
states that, under conditions almost always satisfied in practice, a linear combina-
tion of random variables converges to a Normal distribution. This is particularly
useful if we wish to represent in a compact lumped form the variability that escapes
to a modelling effort (e.g. the regression plus noise form in Section 8.1). Another
relevant property of Gaussian distributions is that they are invariant to linear trans-
formations, i.e. a linear transformation of a Gaussian r.v. is still Gaussian, and its
mean (variance) depends on the mean (variance) of the original r.v.. From a more
pragmatic perspective, an evident asset of a Gaussian representation is that only a
finite number of parameters (two in the univariate case) are sufficient to characterise
the entire distribution.
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Figure 2.10: Density of a standard r.v. N (0, 1)

Prob {µ− σ ≤ x ≤ µ+ σ} ≈ 0.683
Prob {µ− 1.282σ ≤ x ≤ µ+ 1.282σ} ≈ 0.8
Prob {µ− 1.645σ ≤ x ≤ µ+ 1.645σ} ≈ 0.9
Prob {µ− 1.96σ ≤ x ≤ µ+ 1.96σ} ≈ 0.95

Prob {µ− 2σ ≤ x ≤ µ+ 2σ} ≈ 0.954
Prob {µ− 2.57σ ≤ x ≤ µ+ 2.57σ} ≈ 0.99

Prob {µ− 3σ ≤ x ≤ µ+ 3σ} ≈ 0.997

Table 2.4: Some probabilistic relations holding for x ∈ N (µ, σ2)

Exercise

Test yourself the relations in Table 2.4 by random sampling and simulation using
the script Probability/norm.R.

•

2.13 Joint probability

So far, we considered scalar random variables only. However, the most interesting
probabilistic (and machine learning) applications are multivariate, i.e. concerning a
number of variables larger than one. Let us consider a probabilistic model described
by n discrete random variables. A fully specified probabilistic model gives the joint
probability for every combination of the values of the n r.v.s. In other terms, the
joint probability contains all the information about the random variables.

In the discrete case, the model is specified by the values of the probabilities

Prob {z1 = z1, z2 = z2, . . . , zn = zn} = P (z1, z2, . . . , zn) (2.13.52)

for every possible assignment of values z1, . . . , zn to the variables.

Spam mail example

Let us consider a bivariate probabilistic model to describe the relation between the
validity of a received email and the presence of the word Viagra in the text. Let
z1 be the random variable describing the validity of the email (z1 = 0 for no-spam
and z1 = 1 for spam) and z2 the r.v. describing the presence (z2 = 1) or the
absence (z2 = 0) of the word Viagra. The stochastic relationship between these two
variables can be defined by the joint probability distribution given by the table

z1 = 0 z1 = 1 Pz2

z2 = 0 0.8 0.08 0.88
z2 = 1 0.01 0.11 0.12
Pz1

0.81 0.19 1
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•

In the case of n continuous random variables, the model is specified by the joint
distribution function

Prob {z1 ≤ z1, z2 ≤ z2, . . . , zn ≤ zn} = F (z1, z2, . . . , zn)

which returns a value for every possible assignment of values z1, . . . , zn to the vari-
ables.

2.13.1 Marginal and conditional probability

Let {z1, . . . , zm} be a subset of size m of the n discrete r.v.s for which a joint
probability function (2.13.52) is defined. The marginal probabilities for the subset
can be obtained according to (2.5.20) by summing over all possible combinations of
values for the remaining variables.

P (z1, . . . , zm) =
∑
z̃m+1

· · ·
∑
z̃n

P (z1, . . . , zm, z̃m+1, . . . , z̃n) (2.13.53)

Exercise

Compute the marginal probabilities P (z1 = 0) and P (z1 = 1) from the joint prob-
ability of the spam mail example.

•

For continuous random variables the marginal density is

p(z1, . . . , zm) =

∫
p(z1, . . . , zm, zm+1, . . . , zn)dzm+1 . . . dzn (2.13.54)

This is also known as the sum rule or the marginalisation property.
The following definition for r.v. derives directly from Equation (2.3.8).

Definition 13.1 (Conditional probability function). The conditional probability
function for one subset of discrete variables {zi : i ∈ S1} given values for another
disjoint subset {zj : j ∈ S2} where S1 ∩ S2 = ∅, is defined as the ratio

P ({zi : i ∈ S1}|{zj : j ∈ S2}) =
P ({zi : i ∈ S1}, {zj : j ∈ S2})

P ({zj : j ∈ S2})

Definition 13.2 (Conditional density function). The conditional density function
for one subset of continuous variables {zi : i ∈ S1} given values for another disjoint
subset {zj : j ∈ S2} where S1 ∩ S2 = ∅, is defined as the ratio

p({zi : i ∈ S1}|{zj : j ∈ S2}) =
p({zi : i ∈ S1}, {zj : j ∈ S2})

p({zj : j ∈ S2})
(2.13.55)

where p({zj : j ∈ S2}) is the marginal density of the set S2 of variables. When
p({zj : j ∈ S2}) = 0 this quantity is not defined.

The simplified version of (2.13.55) for two r.v.s z1 and z2 is

p(z1 = z1, z2 = z2) =

= p(z2 = z2|z1 = z1)p(z1 = z1) = p(z1 = z1|z2 = z2)p(z2 = z2) (2.13.56)

which is also known as the product rule.
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By combining (2.12.47), the sum rule (2.13.54) and the product rule (2.13.56)
we obtain

p(z1) =

∫
p(z1, z2)dz2 =

∫
p(z1|z2)p(z2)dz2 = Ez2 [p(z1|z2)]

where the subscript z2 makes clear that the expectation is computed with respect
to the distribution of z2 only (while z1 is fixed).

2.13.2 Independence

Having defined the joint and the conditional probability, we can now define when
two random variables are independent.

Definition 13.3 (Independent discrete random variables). Let x and y be two
discrete random variables. Two variables x and y are defined to be statistically
independent (written as x ⊥⊥ y) if the joint probability

Prob {x = x,y = y} = Prob {x = x}Prob {y = y} , ∀x, y (2.13.57)

The definition can be easily extended to the continuous case.

Definition 13.4 (Independent continuous random variables). Two continuous vari-
ables x and y are defined to be statistically independent (written as x ⊥⊥ y) if the
joint density

p(x = x,y = y) = p(x = x)p(y = y), ∀x, y (2.13.58)

From the definition of independence and conditional density, it follows that

x ⊥⊥ y⇔ p(x = x|y = y) = p(x = x) ∀x, y (2.13.59)

In layman’s terms, the independence of two variables means that we do not
expect that the observed outcome of one variable will affect the probability of ob-
serving the other, or equivalently that knowing something about one variable adds
no information about the other. For instance, hair colour and gender are indepen-
dent. Knowing someone’s hair colour adds nothing to the knowledge of his gender.
Height and weight are dependent, however. Knowing someone’s height does not
determine precisely their weight: nevertheless, you have less uncertainty about his
probable weight after you have been told the height.

Though independence is symmetric

x ⊥⊥ y⇔ y ⊥⊥ x

it is neither reflexive (i.e. a variable is not independent of itself) nor transitive. In
other terms, if x and y are independent and y and z are independent, then x and
z need not be independent.

If we consider three instead of two variables, they are said to be mutually inde-
pendent if and only if each pair of rv.s. is independent and

p(x, y, z) = p(x)p(y)p(z)

Also the relationship
x ⊥⊥ (y, z)⇒ x ⊥⊥ z,x ⊥⊥ y

holds, but not the one in the opposite direction.
Note that in mathematical terms an independence assumption implies that a

bivariate density function can be written in a simple form, i.e. as the product of
two univariate densities. This results in an important benefit in terms of the size of
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the parametrisation. For instance, consider two discrete random variables z1 ∈ Z1,
z2 ∈ Z2 such that the cardinality of the two ranges is k1 and k2, respectively. In the
generic case, if z1 and z2 are not independent, the definition of the joint probability
requires the definition of k1k2 − 1 terms8 (or parameters). In the independent case
because of the property (2.13.58), the definition requires k1 − 1 terms for z1 and
k2 − 1 terms for z2, so overall k1 + k2 − 2. This makes a big difference in case of
large values of k1 and k2.

Independence allows an economic parametrisation in the multivariate case as
well. Consider the case of a large number n of binary discrete r.v.s., i.e. each
having a range made of two values. If we need to define the joint probability, we
require 2n − 1 terms (or parameters) in the generic case. If the n variables are
independent, this number is reduced to n.

Exercise

Check whether the variable z1 and z2 of the spam mail example are independent.

•

Note that hence after, for the sake of brevity, we will limit to introduce definitions
for continuous random variables only. All of them can, however, be extended to the
discrete case too.

2.13.3 Chain rule

Given a set of n random variables, from (2.4.18) it is possible to derive the chain rule
(also called the general product rule) which returns the joint density as a function
of conditional densities:

p(zn, . . . , z1) = p(zn|zn−1, . . . , z1)p(zn−1|zn−2, . . . , z1) . . . p(z2|z1)p(z1) (2.13.60)

This rule is convenient to simplify the representation of large variate distributions
by describing them in terms of conditional probabilities.

2.13.4 Conditional independence

Independence is not a stable relation. Though x ⊥⊥ y, the r.v. x may become
dependent on y once we observe the value z of a third variable z. In the same way,
two dependent variables x and y may become independent once the value of z is
known. This leads us to introduce the notion of conditional independence.

Definition 13.5 (Conditional independence). Two r.v.s x and y are conditionally
independent given the value z = z (x ⊥⊥ y|z = z) iff

p(x = x,y = y|z = z) = p(x = x|z = z)p(y = y|z = z) ∀x, y (2.13.61)

Two r.v.s x and y are conditionally independent given z (x ⊥⊥ y|z) iff they are
conditionally independent for all values of z.

Since from the chain rule (2.13.60) we may write

p(x = x,y = y|z = z) = p(x = x|z = z)p(y = y|x = x, z = z)

it follows that x ⊥⊥ y|z = z implies the relation

p(y = y|x = x, z = z) = p(y = y|z = z) (2.13.62)

8minus one because of the normalisation constraint
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In plain words, the notion of conditional dependence formalises the intuition
that a variable may bring (or not) information about a second one, according to
the context.

Note that the statement x ⊥⊥ y|z = z means that x and y are independent
if z = z occurs but does not say anything about the relation between x and y if
z = z does not occur. It could follow that two variables are independent but not
conditional independent (or the other way round). In general independence does
not imply conditional independence and conditional independence does not imply
independence [27] (as in the example below).

Example: pizzas, dependence and conditional independence

Let y be a variable representing the quality of a pizza restaurant and x a variable
denoting the nationality of the restaurant. Intuitively, you would prefer (because
of higher quality y) a pizza served in the restaurant ”Sole Mio” (x =ITALIAN),
rather than in the restaurant ”Tot Straks” (x=BELGIAN). In probabilistic terms,
this means that x and y are dependent (x 6⊥⊥ y), i.e. knowing x reduces the
uncertainty we have about y. However, it is not the restaurant owner who makes
your pizza, but the cook (pizzaiolo). Let z represent his nationality. Now you would
prefer eating a pizza in a Belgian restaurant where the pizzaiolo has Italian origins
rather than in an Italian restaurant with a Flemish cook. In probabilistic terms x
and y become independent once z (the pizzaiolo’s name) is known (x ⊥⊥ y|z).

A joint distribution which satisfies the above conditional independence prop-
erties is in Table 2.5. We may verify the (conditional) independence relations as
follows:

• Pizza’s quality depends on the restaurant ownership, y 6⊥⊥ x:

Prob {y = GOOD} = 0.59 6= Prob {y = GOOD|x = IT} = 0.65

6= Prob {y = GOOD|x = BE} = 0.5

• Pizza’s quality does not depends anymore on the restaurant ownership if the
cook is italian, y ⊥⊥ x|z = ITALIAN :

Prob {y = GOOD|z = IT} = 0.7 = Prob {y = GOOD|x = BE, z = IT} =
Prob {y = GOOD|x = IT, z = IT}

• Pizza’s quality does not depends anymore on the restaurant ownership if the
cook is belgian, y ⊥⊥ x|z = BELGIAN :

Prob {y = GOOD|z = BE} = 0.2 = Prob {y = GOOD|x = BE, z = BE} =
Prob {y = GOOD|x = IT, z = BE}

•

It can be shown that the following two assertions are equivalent

(x ⊥⊥ (z1, z2)|y)⇔ (x ⊥⊥ z1|(y, z2)), (x ⊥⊥ z2|(y, z1))

Also
(x ⊥⊥ y|z), (x ⊥⊥ z|y)⇒ (x ⊥⊥ (y, z))

If (x ⊥⊥ y|z), (z ⊥⊥ y|x), (z ⊥⊥ x|y) then x, y, z are mutually independent.
If z is a random vector, the order of the conditional independence is equal to the
number of variables in z.
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x(owner) z(cook) y(pizza) P(x = x,z = z,y = y)
ITALIAN ITALIAN GOOD 0.378
BELGIAN ITALIAN GOOD 0.168
ITALIAN BELGIAN GOOD 0.012
BELGIAN BELGIAN GOOD 0.032
ITALIAN ITALIAN BAD 0.162
BELGIAN ITALIAN BAD 0.072
ITALIAN BELGIAN BAD 0.048
BELGIAN BELGIAN BAD 0.128

Table 2.5: The probability distribution of the pizzaiolo example
.

2.13.5 Entropy in the continuous case

Consider a continuous r.v. y. The (differential) entropy of y is defined by

H(y) = −
∫

log(p(y))p(y)dy = Ey[− log(p(y))] = Ey

[
log

1

p(y)

]
with the convention that 0 log 0 = 0. Entropy is a functional of the distribution of
y and is a measure of the predictability of a r.v. y. The higher the entropy, the
less reliable are our predictions about y. For a scalar normal r.v. y ∼ N (µ, σ2)

H(y) =
1

2

(
1 + ln 2πσ2

)
=

1

2

(
ln 2πeσ2

)
(2.13.63)

In the case of a normal random vector Y = {y1, . . . ,yn} ∼ N (0,Σ)

H(Y) =
1

2
(ln(2πe)n det(Σ))

2.13.5.1 Joint and conditional entropy

Consider two continuous r.v.s x and y and their joint density p(x, y). The joint
entropy of x and y is defined by

H(x,y) = −
∫ ∫

log(p(x, y))p(x, y)dxdy =

= Ex,y[− log(p(x, y))] = Ex,y

[
log

1

p(x, y)

]
The conditional entropy is defined as

H(y|x) = −
∫ ∫

log(p(y|x))p(x, y)dxdy = Ex,y[− log(p(y|x))] =

= Ex,y

[
log

1

p(y|x)

]
= Ex[H(y|x)]

This quantity quantifies the remaining uncertainty of y once x is known. Note that
in general H(y|x) 6= H(x|y), H(y)−H(y|x) = H(x)−H(x|y) and that the chain
rule holds

H(y,x) = H(y|x) +H(x) (2.13.64)

Also, conditioning reduces entropy

H(y|x) ≤ H(y)
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Figure 2.11: 3D visualisation of a bivariate joint density.

with equality if x and y are independent, i.e. x ⊥⊥ y. This property formalises a
fundamental principle underlying machine learning, data science and prediction in
general, i.e. that by conditioning on some variables x (e.g. inputs) we may reduce
the uncertainty about a variable y (target). Another interesting property is the
independence bound

H(y,x) ≤ H(y) +H(x)

with equality if x ⊥⊥ y.

2.14 Bivariate continuous distribution

Let us consider two continuous r.v. x and y and their bivariate joint density func-
tion px,y(x, y). An example of bivariate joint density function is illustrated in
Figure 2.11. From (2.13.54), we define marginal density the quantity

px(x) =

∫ ∞
−∞

px,y(x, y)dy

and conditional density the quantity

py|x(y|x) =
p(x, y)

p(x)
(2.14.65)

which is, in loose terms, the probability that y belongs to an interval dy about y
assuming that x = x. Note that, if x and y are independent

px,y(x, y) = px(x)py(y), p(y|x) = py(y)

The definition of conditional expectation is obtained from (2.14.65) and (2.12.47).

Definition 14.1 (Conditional expectation). The conditional expectation of y given
x = x is

Ey[y|x = x] =

∫
ypy|x(y|x)dy = µy|x(x) (2.14.66)

From (2.11.33) we may derive that

Ey[y|x = x] = arg min
m

Ey[(y −m)2|x = x] (2.14.67)
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Note that Ey[y|x = x] is a function of x also known as the regression function.
The definition of conditional variance derives from (2.14.65) and (2.12.48).

Definition 14.2 (Conditional variance).

Var [y|x = x] =

∫
(y − µy|x(x))2py|x(y|x)dy (2.14.68)

Note that both these quantities are a function of x. If we replace the given value
x by the r.v. x the terms Ey[y|x] and Var [y|x] are random, too.

Some important results on their expectation are contained in the following the-
orems [166].

Theorem 14.3. For two r.v.s x and y, assuming their expectations exist, we have
that

Ex[Ey[y|x = x]] = Ey[y] (2.14.69)

and
Var [y] = Ex[Var [y|x = x]] + Var [Ey[y|x = x]] (2.14.70)

where Var [y|x = x] and Ey[y|x = x] are functions of x.

We remind that for a bivariate function f(x, y)

Ey[f(x, y)] =

∫
f(x, y)py(y)dy, Ex[f(x, y)] =

∫
f(x, y)px(x)dx.

A 2D representation of a bivariate continuous distribution is illustrated in Figure
2.12. It is worthy noting that, although the conditional distribution is bell-shaped,
this is not necessarily the case for the marginal distributions.

2.14.1 Correlation

Consider two random variables x and y with means µx and µy and standard devi-
ations σx and σy.

Definition 14.4 (Covariance). The covariance between x and y is defined as

Cov[x,y] = E[(x− µx)(y − µy)] = E[xy]− µxµy (2.14.71)

A positive (negative) covariance means that the two variables are positively
(inversely) related, i.e. that once one is above its mean, then the other tends to
be above (below) its mean as well. The covariance can take any value in real
numbers. A limitation of the covariance is that it depends on variables’ scales and
units: for instance, if variables were measured in metres instead of centimetres, this
would induce a change of their covariance. For this reason, it is common to replace
covariance with correlation, a dimensionless measure of linear association.

Definition 14.5 (Correlation). The correlation coefficient is defined as

ρ(x,y) =
Cov[x,y]√

Var [x] Var [y]
(2.14.72)

It is easily shown that −1 ≤ ρ(x,y) ≤ 1. For this reason, the correlation is
sometimes expressed as a percentage.

Definition 14.6 (Uncorrelated variables). Two r.v.s x and y are said to be uncor-
related if ρ(x,y) = 0 or equivalently if

E[xy] = E[x]E[y] (2.14.73)
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Figure 2.12: Bivariate distribution: the figure shows the two marginal distribu-
tions (beside the axis), the conditional expectation function (dashed line) and some
conditional distributions (dotted).

Note that if x and y are two independent random variables, then

E[xy] =

∫
xyp(x, y)dxdy =

∫
xyp(x)p(y)dxdy =

∫
xp(x)dx

∫
yp(y)dy = E[x]E[y]

This means that independence implies uncorrelation. However, the opposite is not
always true. The equivalence between independence and uncorrelation

ρ(x,y) = 0⇔ x ⊥⊥ y (2.14.74)

holds only if x and y are jointly Gaussian.
See Figure 2.13 for an example of uncorrelated but dependent variables.

Exercises

1. Let x and y two discrete independent r.v. such that

Px(−1) = 0.1, Px(0) = 0.8, Px(1) = 0.1

and
Py(1) = 0.1, Py(2) = 0.8, Py(3) = 0.1

If z = x + y show that E[z] = E[x] + E[y]

2. Let x be a discrete r.v. which assumes {−1, 0, 1} with probability 1/3 and
y = x2. Let z = x + y. Show that

• E[z] = E[x] + E[y].

• x and y are uncorrelated but dependent random variables.

•
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Figure 2.13: Dependent but uncorrelated random variables

2.15 Normal distribution: the multivariate case

Let z = [z1, . . . , zn]T be a [n, 1] random vector . The vector is said to be normally
distributed with parameters µ and Σ (also z ∼ N (µ,Σ)) if its probability density
function is given by

pz(z) =
1

(
√

2π)n
√

det(Σ)
exp

{
−1

2
(z − µ)TΣ−1(z − µ)

}
(2.15.75)

where det(Σ) denotes the determinant of the matrix Σ. It follows that

• the mean E[z] = µ is an [n, 1] vector,

• the matrix
Σ = E[(z− µ)(z− µ)T ] (2.15.76)

is the [n, n] covariance matrix. This matrix is symmetric and positive semidef-
inite. It has n(n+ 1)/2 parameters: the diagonal terms Σjj are the variances
Var [zj ] of the vector components and the off-diagonal terms Σjk, j 6= k are the
covariance terms Cov[zj , zk]. The inverse Σ−1 is also called the concentration
matrix.

The quantity
∆ = (z − µ)TΣ−1(z − µ) (2.15.77)

which appears in the exponent of pz is called the Mahalanobis distance from z to
µ. It can be shown that the n-dimensional surfaces of constant probability density

• are hyper-ellipsoids on which ∆2 is constant;

• their principal axes are given by the eigenvectors uj , j = 1, . . . , n of Σ which
satisfy

Σuj = λjuj j = 1, . . . , n

where λj are the corresponding eigenvalues.

• the eigenvalues λj give the variances along the principal directions (Figure
2.14).

If the covariance matrix Σ is diagonal then

• the contours of constant density are hyper-ellipsoids with the principal direc-
tions aligned with the coordinate axes.
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Figure 2.14: Contour curves of normal distribution for n = 2.

• the components of z are then statistically independent since the distribution of
z can be written as the product of the distributions for each of the components
separately in the form

pz(z) =

n∏
j=1

pzj (zj)

• the total number of independent parameters in the distribution is 2n (n for
the mean vector and n for the diagonal covariance matrix).

• if σj = σ for all j, the contours of constant density are hyper-spheres.

2.15.1 Bivariate normal distribution

Let us consider a bivariate (n = 2) normal density whose mean is µ = [µ1, µ2]T and
the covariance matrix is

Σ =

[
σ2

1 σ12

σ21 σ2
2

]
The correlation coefficient is

ρ =
σ12

σ1σ2

It can be shown that the general bivariate normal density has the form

p(z1, z2) =

1

2πσ1σ2

√
1− ρ2

exp

[
− 1

2(1− ρ2)

[(
z1 − µ1

σ1

)2

− 2ρ

(
z1 − µ1

σ1

)(
z2 − µ2

σ2

)
+

(
z2 − µ2

σ2

)2
]]

A plot of a bivariate normal density with µ = [0, 0] and Σ = [1.2919, 0.4546; 0.4546, 1.7081]
and a corresponding contour curve are traced in Figure 2.15 by means of the script
Probability/gaussXYZ.R.

We suggest that the reader play with the Shiny dashboard gaussian.R in order
to visualize the impact of the parameters on the Gaussian distribution.

One of the important properties of the multivariate normal density is that all
conditional and marginal probabilities are also normal. Using the relation

p(z2|z1) =
p(z1, z2)

p(z1)
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Figure 2.15: Bivariate normal density function

we find that p(z2|z1) is a normal distribution N (µ2|1, σ
2
2|1), where

µ2|1 = µ2 + ρ
σ2

σ1
(z1 − µ1)

σ2
2|1 = σ2

2(1− ρ2)

Note that

• µ2|1 is a linear function of z1: if the correlation coefficient ρ is positive, the
larger z1, the larger µ2|1.

• if there is no correlation between z1 and z2, the two variables are independent,
i.e. we can ignore the value of z1 to estimate µ2.

2.15.2 Gaussian mixture distribution

A continuous r.v. z has a Gaussian mixture distribution with m components if

p(z = z) =

m∑
k=1

wkN (z;µk,Σk) (2.15.78)

where N (z;µk,Σk) denotes the Normal density with mean µk and covariance Σk,
and the mixture weights wk satisfy

m∑
k=1

wk = 1, 0 ≤ wk ≤ 1

A Gaussian mixture is a linear superposition of m Gaussian components and, as
such, has a higher expressive power than a unimodal Gaussian distribution: for
instance, it can be used to model multimodal density distributions.

The script Probability/gmm.R samples a bidimensional mixture of Gaussians
with 3 components with diagonal covariances. The density and the sampled points
are in Figure 2.16. An interesting property of Gaussian mixtures is that they are
universal approximator of densities which means that any smooth density can be
approximated with any specific nonzero amount of error by a Gaussian mixture
model (GMM) with enough components.
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Figure 2.16: Density and observations of a bidimensional mixture of Gaussians with
3 components. Each colour corresponds to a different component.

2.15.3 Linear transformations of Gaussian variables

If z1 ∼ N (µ1,Σ1) and z2 ∼ N (µ2,Σ2) are independent Gaussian r.v.s., then the
sum z = z1 + z2 is a Gaussian r.v. z ∼ N (µ1 + µ2,Σ1 + Σ2).

Given two real constants c1 and c2, the linear combination z = c1z1 + c2z2 is a
Gaussian r.v. z ∼ N (c1µ1 + c2µ2, c

2
1Σ1 + c22Σ2).

If z ∼ N (µ,Σ) is a [n, 1] Gaussian random vector and y = Az, with A a [n, n]
real matrix, then y ∼ N (Aµ,AΣAT ) is a Gaussian vector.

2.16 Mutual information

Mutual information is one of the most widely used measures to convey the depen-
dency of variables. It is a measure of the amount of information that one random
variable contains about another random variable. It can also be considered as the
distance from independence between the two variables. This quantity is always non-
negative and zero if and only if the two variables are stochastically independent.

Given two random variables x and y, their mutual information is defined in
terms of their probabilistic marginal density functions px(x), py(y) and the joint
p(x,y)(x, y):

I(x; y) =

∫ ∫
log

p(x, y)

p(x)p(y)
p(x, y)dxdy = H(y)−H(y|x) = H(x)−H(x|y)

(2.16.79)
with the convention that 0 log 0

0 = 0. From (2.13.64), we derive

I(x; y) = H(y)−H(y|x) = H(y) +H(x)−H(x,y) (2.16.80)

Mutual information is null if and only if x and y are independent, i.e.

I(x; y) = 0⇔ x ⊥⊥ y. (2.16.81)
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In other words, the larger the mutual information term, the stronger is the degree
of dependency between two variables.

In the Gaussian case, an analytical link between correlation and mutual infor-
mation exiss. Let (x,y) a normally distributed random vector with a correlation
coefficient ρ. The mutual information between x and y is given by

I(x; y) = −1

2
log(1− ρ2)

Equivalentl,y the correlation coefficient (2.14.72) can be written as

ρ =
√

1− exp(−2I(x; y))

In agreement with (2.16.81) and (2.14.74), it follows that in the Gaussian case

ρ(x,y) = 0⇔ I(x; y) = 0 (2.16.82)

2.16.1 Conditional mutual information

Consider three r.v.s x, y and z. The conditional mutual information is defined by

I(y; x|z) = H(y|z)−H(y|x, z) (2.16.83)

It can also be written as

I(y; x|z) =

∫ ∫
log

p(x, y|z)
p(x|z)p(y|z)

p(x, y, z)dxdydz

While mutual information quantifies the degree of (in)dependence between two
variables, conditional mutual information quantifies the degree of conditional (in)dependence
(Section 2.13.4) between three variables. The conditional mutual information is null
iff x and y are conditionally independent given z, i.e.

I(x; y|z) = 0⇔ x ⊥⊥ y|z (2.16.84)

Note that I(x; y|z) can be null though I(x; y) > 0, like in the pizzas example
in Section 2.13.4. Also a symmetric configuration is possible, e.g. I(x; y) = 0 but
I(x; y|z) > 0 as in the case of complementary variables which will be discussed in
Section 10.8.

2.16.2 Joint mutual information

This section derives the information of a pair of variables (x1,x2) about a third one
y.

From (2.16.83) and (2.13.64) it follows:

I(x; y|z) = H(y|z)−H(y|x, z) = H(y|z) +H(x|z)−H ((x,y)|z) =

= H ((x, z)) +H ((y, z))−H(z)−H ((x,y, z)) (2.16.85)

From (2.16.80) it follows

I((x1,x2); y) = H(x1,x2) +H(y)−H(x1,x2,y)

and

I(x1; y) = H(x1) +H(y)−H(x1,y)
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From (2.16.85) it follows

I(x2; y|x1) = H(y|x1)−H(y|x1,x2) =

= H(y,x1)−H(x1)−H(y,x1,x2) +H(x1,x2)

On the basis of the results above, we derive the chain rule of mutual information

I(x1; y) + I(x2; y|x1) =

= H(x1) +H(y)−H(x1,y) +H(y,x1)−H(x1)−H(y,x1,x2) +H(x1,x2) =

= H(y)−H(y,x1,x2) +H(x1,x2) = I((x1,x2); y) (2.16.86)

This formula shows that the information that a pair of variables (x1,x2) brings
about a third variable y is not simply the sum of the two mutual information terms
I(x1; y) and I(x2; y) but is the sum of I(x1; y) and the conditional information of
x2 and y given x1. This aspect is particularly important in the feature selection
context (Section 10.8) where simplistic assumptions of monotonicity and additivity
do not hold.

For n > 2 variables X = {x1, . . . ,xn} the chain rule formulation is

I(X; y) = I(X−i; y|xi) + I(xi; y) = I(xi; y|X−i) + I(X−i; y) i = 1, . . . , n
(2.16.87)

where X−i denote the X set with the ith term set aside.

2.16.3 Partial correlation coefficient

We have seen in Section 2.14.1 that correlation is a good measure of independence
in the case of Gaussian distributions. The same role for conditional independence
is played by partial correlation.

Definition 16.1 (First-order partial correlation). Let us consider three r.v.s x, y
and z. The first-order partial correlation is

ρxy|z =
ρxy − ρxzρzy√

(1− ρ2
xz)(1− ρ2

yz)
(2.16.88)

where ρxy is defined in (2.14.72).

This quantity returns a measure of the correlation between x and y once the
value of z is known. It is possible to extend the partial correlation to the condition-
ing of two variables.

Definition 16.2 (Second-order correlation).

ρx1y|zx2
=

ρx1y|z − ρx1x2|zρyx2|z√
(1− ρ2

x1x2|z)(1− ρ2
yx2|z)

This can also be used to define a recurrence relationship where qth order partial
correlations can be computed from (q − 1)th order partial correlations.

Note that the partial correlation (2.16.88) may also be obtained by computing
the correlation between wx and wy where wx and wy are the residuals of the
regression (Section 7.1) of x and y on z, respectively.

Another interesting property is the link between partial correlation and con-
centration matrix (Section 2.15). Let Σ and Ω = Σ−1 denote the covariance and
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the concentration matrix of the normal set of variables Z ∪ {x,y}. The partial
correlation coefficient ρxy|Z can be obtained by matrix inversion:

ρxy|Z =
−ωxy√
ωxxωxy

(2.16.89)

where ωxy is the element of the concentration matrix corresponding to x and y.
Consider a multivariate normal vector X, such that xi,xj ∈ X, XS ⊂ X and s

is the dimension of XS . Then

ρxixj |XS
= 0⇔ I(xi,xj |XS) = 0

Note that this is the conditional version of the relation (2.16.82).

2.17 Functions of random variables

For any deterministic function g(·) : Z → R of z, the expectation of the r.v. g(z) is

E[g(z)] =

∫
g(z)pz(z)dz (2.17.90)

This is also known as the law of the unconscious statistician (LOTUS). Note that
in general E[g(z)] 6= g(E[z]), with the exception of the linear function g(z) = az+ b
which will be discussed in the following section.

Exercise

Let z be a scalar r.v. and

g(z) =

{
1 z ∈ [a, b]

0 else

with a < b. Compute E[g(z)].

•

2.18 Monte Carlo approximation of expectation

For a generic function g(·), the analytical computation or numerical integration
of (2.17.90) may be highly complex or impossible. A numerical alternative is rep-
resented by the adoption of a Monte Carlo method [142]. Such strategy requires
a pseudo-random generator of examples according to the distribution of z. In a
nutshell a Monte Carlo approximation of Ez[g(z)] relies on the following steps:

1. generating a high number S of sample points zi ∼ Fz, i = 1, . . . , S by a using
a pseudo-random generator of the distribution of z,

2. computing g(zi), i = 1, . . . , S, for all the generated samples,

3. returning the approximation

E[g(z)] ≈
∑S
i=1 g(zi)

S

If the number S (also known as the number of trials) is sufficiently high, we may
consider such approximation as reliable. The Monte Carlo procedure may be used
in general to approximate all the parameters of the distribution (e.g. the variance)
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which may be written in the form of expectations. In the exercises and examples
of this book, we will often use the Monte Carlo method to numerically compute
expectation terms which would be otherwise analytically intractable. In particular,
the Monte Carlo method will give a numerical form to important notions of machine
learning (notably bias, variance and generalisation error) which would otherwise
remain abstract mathematical notions.

R script

The script Probability/mcarlo.R implements the Monte Carlo computation of
the mean and variance of z ∼ N (µ, σ2) as well as the computation of two more
complex expectation terms: E[z2] and E[|z|]. Since those quantities may also be
computed analytically, the script compares the analytical calue and the Monte Carlo
approximation. It appears that the higher the number of trials, the higher the
accuracy of the approximation.

The Shiny dashboard mcarlo.R visualises the result of some operations on a
single and two random variables by using a Monte Carlo simulation.

•

2.19 Linear combinations of r.v.

The expected value of a linear combination of r.v.s is simply the linear combination
of their respective expectation values

E[ax + by] = aE[x] + bE[y], a ∈ R, b ∈ R (2.19.91)

i.e., expectation is a linear statistic. On the contrary, the variance is not a linear
statistic. We have

Var [ax + by] = a2Var [x] + b2Var [y] + 2ab (E[xy]− E[x]E[y]) (2.19.92)

= a2Var [x] + b2Var [y] + 2abCov[x,y] (2.19.93)

where the quantity Cov[x,y] is defined in (2.14.71).
Given n r.v. zj , j = 1, . . . , n

Var

 n∑
j=1

cjzj

 =

n∑
j=1

c2jVar [zj ] + 2
∑
i<j

cicjCov[zi, zj ] (2.19.94)

Let us consider now n random variables with the same variance σ2 and mutual
correlation ρ. Then the variance of their average is

Var

[∑n
j=1 zj

n

]
=
nσ2

n2
+ 2

1

n2

n(n− 1)

2
ρσ2 =

=
σ2

n
+ ρσ2 − ρσ2

n
= (1− ρ)

σ2

n
+ ρσ2 (2.19.95)

Exercise

Write a R script which implements a Monte Carlo method (Section 2.18) to prove
the identity (2.19.91).

•
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2.19.1 The sum of i.i.d. random variables

Suppose that z1,z2,. . . ,zN are i.i.d. (identically and independently distributed)
random variables, discrete or continuous, each having a probability distribution
with mean µ and variance σ2. Let us consider the two derived r.v., that is the sum

SN = z1 + z2 + · · ·+ zN

and the average

z̄ =
z1 + z2 + · · ·+ zN

N
(2.19.96)

The following relations hold

E[SN ] = Nµ, Var [SN ] = Nσ2 (2.19.97)

E[z̄] = µ, Var [z̄] =
σ2

N
(2.19.98)

An illustration of these relations by simulation can be obtained by running the R
script Probability/sum rv.R.

2.20 Conclusion

The reader (especially if practitioner) might think that a chapter on probability
theory is an unnecessary frill in a book on machine learning. The author has a
different opinion. Probability extends the logical formalism and makes formal hu-
man patterns of reasoning under uncertainty (e.g. abduction). Also, probability
provides an effective language to formalise the task of machine learning, i.e. using
some variables (e.g. inputs) to explain, provide information (or reduce uncertainty)
about other ones (e.g. targets). According to Aristotles, philosophy begins with
wonder. From a scientific perspective, wonder originates from uncertainty, and sci-
ence has the role of reducing it by explanation. The author hopes that this chapter
showed that uncertainty and information are not only philosophical concepts but
quantities whose nature and relationship can be described in probabilistic terms.

What is still missing for the moment is the second major ingredient (besides
uncertainty) of machine learning: data. Please be patient: the relation between
uncertainty and observations will be discussed in Chapter 3, which introduces es-
timation as the statistical way of combining probabilistic models with real-world
data.

2.21 Exercises

1. Suppose you collect a dataset about spam in emails. Let the binary variables x1,
x2 and x3 represent the occurrence of the words ”Viagra”, ”Lottery” and ”Won”,
respectively, in a email. Let the dataset of 20 emails being summarised as follows
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Document x1 (Viagra) x2 (Lottery) x3 (Won) y (Class)

E1 0 0 0 NOSPAM
E2 0 1 1 SPAM
E3 0 0 1 NOSPAM
E4 0 1 1 SPAM
E5 1 0 0 SPAM
E6 1 1 1 SPAM
E7 0 0 1 NOSPAM
E8 0 1 1 SPAM
E9 0 0 0 NOSPAM
E10 0 1 1 SPAM
E11 1 0 0 NOSPAM
E12 0 1 1 SPAM
E13 0 0 0 NOSPAM
E14 0 1 1 SPAM
E15 0 0 1 NOSPAM
E16 0 1 1 SPAM
E17 1 0 0 SPAM
E18 1 1 1 SPAM
E19 0 0 1 NOSPAM
E20 0 1 1 SPAM

where

• 0 stands for the case-insensitive absence of the word in the email.

• 1 stands for the case-insensitive presence of the word in the email.

Let y = 1 denote a spam email and y = 0 a no-spam email.

The student should estimate on the basis of the frequency of the data above

• Prob {x1 = 1,x2 = 1}
• Prob {y = 0|x2 = 1,x3 = 1}
• Prob {x1 = 0|x2 = 1}
• Prob {x3 = 1|y = 0,x2 = 0}
• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0}
• Prob {x1 = 0|y = 0}
• Prob {y = 0}

Solution:

• Prob {x1 = 1,x2 = 1} = 0.1

• Prob {y = 0|x2 = 1,x3 = 1} = 0

• Prob {x1 = 0|x2 = 1} = 0.8

• Prob {x3 = 1|y = 0,x2 = 0} = 0.5

• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0} = 1

• Prob {x1 = 0|y = 0} = 0.875

• Prob {y = 0} = 0.4

2. Let us consider a fraud detection problem. Suppose we collect the following trans-
actional dataset where v = 1 means that the transaction came from a suspicious
web site and f = 1 means that the transaction is fraudulent.

f = 1 f = 0

v = 1 500 1000
v = 0 1 10000

Estimate the following quantities by using the frequency as estimator of probability:
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• Prob {f = 1}
• Prob {v = 0}
• Prob {f = 1|v = 1}
• Prob {v = 1|f = 1}

Use the Bayes theorem to compute Prob {v = 1|f = 1} and show that the result is
identical to the one computed before.

Solution:

• Prob {f = 1} = 501/11501 = 0.043

• Prob {v = 0} = 10001/11501 = 0.869

• Prob {f = 1|v = 1} = 500/1500 = 1/3

• Prob {v = 1|f = 1} = 500/501

By Bayes theorem: Prob {v = 1|f = 1} = Prob{f=1|v=1}Prob{v=1}
Prob{f=1}

= 1/3(1500/11501)
501/11501

=

500/501

3. Let us consider a dataset with 4 binary variables

x1 x2 x3 y

1 1 0 1
0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0
0 1 0 0
1 1 1 1

Estimate the following quantities by using the frequency as estimator of probability

• Prob {y = 1}
• Prob {y = 1|x1 = 0}
• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0}

Solution:

• Prob {y = 1} = 3/11

• Prob {y = 1|x1 = 0} = 0

• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0} = 0

4. Let us consider a task with three binary inputs and one binary target where the
input distribution is

x1 x2 x3 P (x1, x2, x3)

0 0 0 0.2
0 0 1 0.1
0 1 0 0.1
0 1 1 0.1
1 0 0 0.1
1 0 1 0.1
1 1 0 0.1
1 1 1 0.2
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and the conditional probability is

x1 x2 x3 P (y = 1|x1, x2, x3)

0 0 0 0.8
0 0 1 0.1
0 1 0 0.5
0 1 1 0.9
1 0 0 0.05
1 0 1 0.1
1 1 0 0.05
1 1 1 0.5

Compute

• Prob {x1 = 1,x2 = 1}
• Prob {y = 0|x2 = 1,x3 = 0}
• Prob {x1 = 0|x2 = 1}
• Prob {x3 = 1|y = 0,x2 = 1}
• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0}
• Prob {x1 = 0|y = 0}

Solution:

• Prob {x1 = 1,x2 = 1}=0.1+0.2=0.3

• By using (2.5.22) (where E ′ stands for x2 = 1,x3 = 0) we obtain:

Prob {y = 0|x2 = 1,x3 = 0} = Prob {y = 0|x1 = 0,x2 = 1,x3 = 0}∗Prob {x1 = 0|x2 = 1,x3 = 0}+
Prob {y = 0|x1 = 1,x2 = 1,x3 = 0}∗Prob {x1 = 1|x2 = 1,x3 = 0} = 0.5∗0.5+
0.95 ∗ 0.5 = 0.725

• Prob {x1 = 0|x2 = 1} = (0.1 + 0.1)/(0.2 + 0.3) = 0.4

• From the joint four variate distribution computed in the exercise below

Prob {x3 = 1|y = 0,x2 = 1} =
Prob {x3 = 1,y = 0,x2 = 1}

Prob {y = 0,x2 = 1} =
0.11

0.255
= 0.4313725

• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0} = 1− 0.8 = 0.2

• From the joint four variate distribution computed in the exercise below

Prob {x1 = 0|y = 0} =
Prob {x1 = 0,y = 0}

Prob {y = 0} =
0.19

0.57
= 0.3333

5. Consider the probability distribution of the previous exercise. Is y conditionally
independent of x1 given x2?

Solution:

According to Section 2.13.4, y is conditionally independent of x1 given x2 if for all
values x2:

Prob {y = y|x1 = x1,x2 = x2} = Prob {y = y|x2 = x2}

Let us compute Prob {y = 1|x1 = 1,x2 = x2} and Prob {y = 1|x2 = x2} for x2 = 0.
From (2.5.22)

Prob {y = 1|x2 = 0,x1 = 1} =∑
x3

Prob {y = 1|x2 = 0,x1 = 1,x3 = x3}Prob {x3 = x3|x2 = 0,x1 = 1} =

= Prob {y = 1|x2 = 0,x1 = 1x3 = 0}Prob {x3 = 0|x2 = 0,x1 = 1}+

+ Prob {y = 1|x2 = 0,x1 = 1,x3 = 1}Prob {x3 = 1|x2 = 0,x1 = 1} =

= 0.05 ∗ 0.1/0.2 + 0.1 ∗ 0.1/0.2 = 0.075
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and

Prob {y = 1|x2 = 0} =

=
∑
x1,x3

Prob {y = 1|x2 = 0,x1 = x1,x3 = x3}Prob {x1 = x1,x3 = x3|x2 = 0} =

= Prob {y = 1|x2 = 0,x1 = 0,x3 = 0}Prob {x1 = 0,x3 = 0|x2 = 0}+

+ Prob {y = 1|x2 = 0,x1 = 0,x3 = 1}Prob {x1 = 0,x3 = 1|x2 = 0}+

+ Prob {y = 1|x2 = 0,x1 = 1,x3 = 0}Prob {x1 = 1,x3 = 0|x2 = 0}+

+ Prob {y = 1|x2 = 0,x1 = 1,x3 = 1}Prob {x1 = 1,x3 = 1|x2 = 0} =

= 0.8 ∗ 0.2/0.5 + 0.1 ∗ 0.1/0.5 + 0.05 ∗ 0.1/0.5 + 0.1 ∗ 0.1/0.5 = 0.37

Since those two values are different, the two variables are not conditionally indepen-
dent.

An alternative would be first computing the joint distribution of the 4 variables and
then deriving the conditional terms. Since

Prob {y, x1, x2, x3} = Prob {y|x1, x2, x3}Prob {x1, x2, x3}

the joint distribution is :

y x1 x2 x3 P (y, x1, x2, x3)

0 0 0 0 (1-0.8)*0.2=0.04
0 0 0 1 (1-0.1)*0.1=0.09
0 0 1 0 0.05
0 0 1 1 0.01
0 1 0 0 0.095
0 1 0 1 0.09
0 1 1 0 0.095
0 1 1 1 0.1
1 0 0 0 0.8*0.2=0.16
1 0 0 1 0.1*0.1=0.01
1 0 1 0 0.05
1 0 1 1 0.09
1 1 0 0 0.005
1 1 0 1 0.01
1 1 1 0 0.005
1 1 1 1 0.1

From the table above we compute the conditional terms as

Prob {y = 1|x2 = 0} =
Prob {y = 1,x2 = 0}

Prob {x2 = 0} =

=
0.16 + 0.01 + 0.01 + 0.005

0.04 + 0.09 + 0.095 + 0.09 + 0.16 + 0.01 + 0.005 + 0.01
= 0.37

and

Prob {y = 1|x2 = 0,x1 = 1} =
Prob {y = 1,x1 = 1,x2 = 0}

Prob {x1 = 1,x2 = 0} =

=
0.005 + 0.01

0.095 + 0.09 + 0.005 + 0.01
= 0.075

Since the results are (obviously) identical to the ones obtained with the first method,
the conclusion is the same, i.e. the variables are conditionally dependent.

6. Let x,y, z be three binary random variables denoting the pathological mutation of
a given gene of the father, mother and child, respectively. The values 0 and 1 stand
for the absence and presence of the mutation, respectively. Suppose that
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• the two parents have the same probability 0.5 of having a pathological mutation
in a given gene

• the variables x and y are independent

• the child may inherit the mutation according to this conditional probability
table

Prob {z = 1|x = x,y = y} x y
0 0 0

0.6 0 1
0.4 1 0
0.7 1 1

1. What is the probability that the child has no mutation if both parents are not
affected?

2. What is the probability that the father had a mutated gene if the child has the
mutation and the mother is not affected?

3. What is the probability that the father has a mutated gene if the child has the
mutation and the mother is affected?

4. What is the probability that the child has the mutation if the father has none?

5. What is the probability that the father has a mutated gene if the child has the
mutation?

6. What is the probability that the father has a mutated gene if the child has no
mutation?

Solution:

Let us derive first

P (z = 1|y = 0) =

P (z = 1|y = 0,x = 1)P (x = 1|y = 0) + P (z = 1|y = 0,x = 0)P (x = 0|y = 0) =

= P (z = 1|y = 0,x = 1)P (x = 1) + P (z = 1|y = 0,x = 0)P (x = 0) =

= 0.4 ∗ 0.5 + 0 ∗ 0.5 = 0.2

P (z = 1|y = 1) =

P (z = 1|y = 1,x = 1)P (x = 1|y = 1) + P (z = 1|y = 1,x = 0)P (x = 0|y = 1) =

= P (z = 1|y = 1,x = 1)P (x = 1) + P (z = 1|y = 1,x = 0)P (x = 0) =

= 0.7 ∗ 0.5 + 0.6 ∗ 0.5 = 0.65

P (z = 1|x = 1) =

P (z = 1|x = 1,y = 0)P (y = 0|x = 1) + P (z = 1|y = 1,x = 1)P (y = 1|x = 1) =

= 0.4 ∗ 0.5 + 0.7 ∗ 0.5 = 0.55

It follows

1.
P (z = 0|x = 0,y = 0) = 1

2.

P (x = 1|z = 1,y = 0) =
P (z = 1|x = 1,y = 0)P (x = 1|y = 0)

P (z = 1|y = 0
=

0.4 ∗ 0.5

0.2
= 1
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3.

P (x = 1|z = 1,y = 1) =
P (z = 1|x = 1,y = 1)P (x = 1|y = 1)

P (z = 1|y = 1
=

0.7 ∗ 0.5

0.65
= 0.538

4.

P (z = 1|x = 0) = P (z = 1|x = 0,y = 1)P (y = 1|x = 0)+P (z = 1|x = 0,y = 0)P (y = 0|x = 0) =

= 0.6 ∗ 0.5 + 0 = 0.3

5.

P (x = 1|z = 1) =
P (z = 1|x = 1)P (x = 1)

P (z = 1
=

0.55 ∗ 0.5

0.55 ∗ 0.5 + 0.3 ∗ 0.5
= 0.647

6.

P (x = 1|z = 0) =
P (z = 0|x = 1)P (x = 1)

P (z = 0
=

0.45 ∗ 0.5

0.45 ∗ 0.5 + 0.7 ∗ 0.5
= 0.3913
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Chapter 3

Parametric estimation and
testing

Given the correct probabilistic model of a phenomenon, we may derive the properties
of observable data by logical deduction. The theory of statistics is designed to
reverse the deductive process . It takes measured data and uses them to propose a
probabilistic model, to estimate its parameters and eventually to validate it. This
chapter will focus on the estimation methodology, intended as the inductive process
which leads from observed data to a probabilistic description of reality. We will
focus here on the parametric approach, which assumes that we know all about the
probabilistic model except the value of a finite number of parameters. Parametric
estimation algorithms build estimates from data and, more important, statistical
measures to assess their quality. There are two main approaches to parametric
estimation:

Classical or frequentist: it is based on the idea that sample data are the sole
quantifiable form of relevant information and that the parameters are fixed
but unknown. It is related to the frequency view of probability (Section 2.2.2).

Bayesian approach: the parameters are supposed to be random variables, having
a distribution prior to data observation and a distribution posterior to data
observation. This approach assumes that there exists something beyond data,
(i.e. a human sense of uncertainty or a subjective degree of belief), and that
this belief can be described in the probabilistic form.

It is well known, however, that in large-sample problems, frequentist and Bayesian
approaches tend to produce similar numerical results and that in small-medium
settings, though the two outcomes may not coincide, their difference is usually
small. For those reasons and, mainly for reasons of space, we will limit here to
consider the classical approach. It is important, however, not to underestimate the
important role of the Bayesian estimation philosophy, which led recently to a large
amount of research in Bayesian data analysis and important applications in machine
learning [74]..

3.1 Classical approach

The classical approach to parameter estimation dates back to the period 1920-35
when J. Neyman and E.S. Pearson, stimulated by problems in biology and industry,
concentrated on the principles for testing hypothesis and R.A. Fisher, interested in
agricultural issues, focused on the estimation from data.

77
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We will introduce estimation by considering a simple univariate setting. Let z
be a continuous r.v. and suppose that

1. we know the analytical form of the distribution family

Fz(z) = Fz(z, θ)

but the parameter vector θ ∈ Θ is unknown,

2. we have access to a set DN of N i.i.d. measurements of z, called sample data.

In the general case, few parameters are not enough to describe a function, like
the density function: in that sense, parametric densities are an obvious simplifica-
tion. An example of a parametric distribution function is the Normal distribution
(Section (2.12.2)), where the parameter vector is θ = [µ, σ]. The goal of the esti-

mation procedure is to find a value θ̂ of the parameter θ so that the parameterised
distribution Fz(z, θ̂) closely matches the distribution of data.

The notation i.i.d. stands for identically and independently distributed. Identi-
cally distributed means that all the observations have been sampled from the same
distribution, that is

Prob {zi = z} = Prob {zj = z} for all i, j = 1, . . . , N and z ∈ Z

Independently distributed means that the fact that we have observed a certain value
zi does not influence the probability of observing the value zj , that is

Prob {zj = z|zi = zi} = Prob {zj = z}

Example

Here you find some examples of estimation problems:

1. Let DN = {20, 31, 14, 11, 19, . . . } be the times in minutes spent the last 2
weeks to go home. What is the mean time to reach my house from ULB?

2. Consider the car traffic in the boulevard Jacques. Suppose that the measures
of the inter-arrival times are DN = {10, 11, 1, 21, 2, . . . } seconds. What does
this imply about the mean inter-arrival time?

3. Consider the students of the last year of Computer Science. What is the
variance of their grades?

4. Let z be the r.v. denoting tomorrow’s temperature. How can I estimate its
mean value on the basis of past observations?

•

Parametric estimation is a mapping from the space of the sample data to the
space of parameters Θ. The two possible outcomes are:

1. some specific value of Θ. In this case, we have the so-called point estimation.

2. some particular region of Θ. In this case, we obtain an interval of confidence
on the value of the parameter.
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3.1.1 Point estimation

Consider a random variable z with a parametric distribution Fz(z, θ), θ ∈ Θ. The
unknown parameter can be written as a function(al) of F

θ = t(F )

This corresponds to the fact that θ is a characteristic of the population described
by Fz(·). For instance, the expected value parameter µ = t(F ) =

∫
zdF (z) is a

functional of F .
Suppose now that we have observed a set ofN i.i.d. valuesDN = {z1, z2, . . . , zN}.

A point estimate is an example of statistic, where by statistic it is generally meant
any function of the sample data DN . In other terms a point estimate is a function

θ̂ = g(DN ) (3.1.1)

of the sample dataset DN , where g(·) stands for the estimation algorithm, that
is the procedure which returns the estimation starting from a dataset DN . Note
that, from a machine learning perspective, it is more appropriate to consider g,
rather than a conventional mathematical function, as a generic algorithm taking
the sample dataset as an input and returning an estimation as output1.

There are two main issues in estimation and, more generally, in data analysis,
statistics and machine learning: how to construct an estimator (i.e. which form

should g take) and how to assess the quality of the returned estimation θ̂. In
Sections 3.3 and 3.8 we will discuss two strategies for defining an estimator; the
plug-in principle and the maximum likelihood. In Section 3.5 we will present the
statistical measures most commonly adopted to assess an estimator accuracy.

Before introducing the plug-in principle, we need, however, to present the notion
of empirical distribution.

3.2 Empirical distributions

Suppose we have observed a i.i.d. random sample of size N from a probability
distribution Fz(·)

Fz → {z1, z2, . . . , zN}
The empirical distribution probability F̂ is defined as the discrete distribution

that assigns probability 1/N to each value zi, i = 1, . . . , N . In other words, F̂
assigns to a set A in the sample space of z its empirical probability

Prob {z ∈ A} ≈ #zi ∈ A
N

that is the proportion of the observations in DN which occur in A.
It can be proved that the vector of observed frequencies in F̂ is a sufficient

statistic for the true distribution F (·), i.e. all the information about F (·) contained
in DN is also contained in F̂ (·).

Now consider the distribution function Fz(z) of a continuous rv z and a set of
N observations DN = {z1, . . . , zN}. Since

Fz(z) = Prob {z ≤ z}

we define N(z) as the number of observations in DN that do not exceed z. We
obtain then the empirical estimate of F (·)

F̂z(z) =
N(z)

N
=

#zi ≤ z
N

(3.2.2)

1For instance, an awkward, yet acceptable, estimation algorithm could take the dataset, discard
all the examples except the third one and return it as the estimation.
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Figure 3.1: Empirical distribution.

This function is a staircase function with discontinuities at the points zi (Figure
3.1).

Example

Suppose that our dataset is made of the following N = 14 observations

DN = {20, 21, 22, 20, 23, 25, 26, 25, 20, 23, 24, 25, 26, 29}

The empirical distribution function F̂z (which can be traced by running the
script Estimation/cumdis.R) is plotted in Figure 3.1.

3.3 Plug-in principle to define an estimator

Consider an r.v. z and sample dataset DN drawn from the parametric distribution
Fz(z, θ). The main issue of estimation is how to define an estimate of θ. A possible
solution is given by the plug-in principle, that is a simple method of estimating
parameters from observations. The plug-in estimate of a parameter (or target) θ is
defined to be:

θ̂ = t(F̂ (z)) (3.3.3)

obtained by replacing the distribution function with the empirical distribution in
the analytical expression of the parameter.

The following section will discuss the plug-in estimators of the first two moments
of a probability distribution.
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3.3.1 Sample average

Consider an r.v. z ∼ Fz(·) such that

θ = E[z] =

∫
zdF (z)

with θ unknown. Suppose we have available the sample Fz → DN , made of N
observations. The plug-in point estimate of θ is given by the sample average

θ̂ =
1

N

N∑
i=1

zi = µ̂ (3.3.4)

Note that the sample average is not a parameter (i.e. it is not a function of the
probability distribution Fz) but a statistic (i.e. a function of the dataset DN ).

3.3.2 Sample variance

Consider a r.v. z ∼ Fz(·) where the mean µ and the variance σ2 are unknown.
Suppose we have available the sample Fz → DN . Once we have the sample average
µ̂, the plug-in estimate of σ2 is given by the sample variance

σ̂2 =
1

N − 1

N∑
i=1

(zi − µ̂)2 (3.3.5)

The presence of N − 1 instead of N at the denominator will be explained later.
Note also that the following relation holds for all zi

1

N

N∑
i=1

(zi − µ̂)
2

=

(
1

N

N∑
i=1

z2
i

)
− µ̂2

The expression of the plug-in estimators of other interesting probabilistic pa-
rameters are in the Appendix (E).

3.4 Sampling distribution

Given a dataset DN of N observations sampled from z, let us consider a point
estimate

θ̂ = g(DN ) (3.4.6)

Note that since DN is the outcome of N realisations of a r.v. z, the vector DN

can be considered as the realisation of a random vector DN
2.

By applying the transformation g to the random variable DN we obtain the
random variable

θ̂ = g(DN ) (3.4.7)

which is called the point estimator of θ. A key point is the following: while θ is
an (unknown) fixed value, the estimator θ̂ is a random variable. For instance, if
we aim to estimate θ = µ (expected value of z) the parameter µ is an unknown
and fixed value while the average µ̂ is a random variable (since it is a function of a
random dataset).

2This is not a mathematical detail but an essential aspect of the data-driven discovery process
under uncertainty. Every model learned from data, or more in general all knowledge acquired from
data, is built on random foundations and, as such, it is a random quantity and has to be assessed
as such.



82CHAPTER 3. PARAMETRIC ESTIMATION: THE CLASSICAL APPROACH

Figure 3.2: From the parametric parent distribution of Fz(·, θ) (underlying the data

generation) to the sampling distribution of the estimator θ̂N . Each “hypothetical”
dataset has the same size N of the observed dataset.

The probability distribution of the r.v. θ̂ is called the sampling distribution,
while the distribution of the r.v. z (with parameter θ) is called the parent distribu-
tion. The sampling distribution is a key notion in the frequentist estimation where
the accuracy of an estimator is defined with respect to a theoretical and infinite
sequence of future samples all issued from the same parent distribution (also called
the long-run behaviour of the estimator). An example of the process bringing from
the parent to the sampling distribution is plotted in Figure 3.2 where an infinite
number of “hypothetical” datasets of size N is sampled and for each of them an
estimate is computed. Note that the sampling distribution, though a theoretical
quantity, is of great significance in estimation since it quantifies the estimator’s ac-
curacy in probabilistic terms, or, in simpler words, the gap between the estimation
and the parameter θ.

3.4.1 Shiny dashboard

The dashboard estimation.R (Appendix H) provides an interactive visualisation
of the sampling distribution of the plug-in estimators of the parameters (mean
and variance) of a Normal parent distribution z. We invite the reader to modify
the values N , µ and σ and to observe the impact on the sampling distribution.
Note that the sampling distribution is obtained by a Monte Carlo simulation of the
process illustrated in Figure 3.2. The simulation (Algorithm 1 and related R code in
Table 3.1) consists in repeating a number (adjustable) of trials where for each trial
a sample dataset of size N is generated and the plug-in estimations are computed.
The dashboard shows the histograms of the estimations.
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Algorithm 1 Monte Carlo simulation to generate a sampling distribution

1: S = {}
2: for r = 1 to R do
3: Fz → DN = {z1, z2, . . . , zN} . // pseudo-random sample generation

4: θ̂ = g(DN ) . // estimation computation

5: S = S ∪ {θ̂}
6: end for
7: Plot histogram of S
8: Compute statistics of S (mean, variance)
9: Study distribution of S with respect to θ (e.g. estimate bias)

mu<-0 # parameter

R<-10000 # number trials

N<-20 # size dataset

S<-numeric(R)

for (r in 1:R){

D<-rnorm(N,mean=mu,sd=10)

# pseudo-random sample generation

S[r]<-mean(D)

# compute estimate

}

hist(S)

# Plot histogram of S

bias=mean(S)-mu

# Estimate bias

Table 3.1: R version of Algorithm 1 pseudo-code to generate the sampling distribu-
tion of µ̂.

3.5 The assessment of an estimator

Once defined an estimator θ̂ (e.g. in algorithmic or mathematical form), it is
possible to assess its accuracy from its sampling distribution.

3.5.1 Bias and variance

The following measures rely on the sampling distribution3 to assess the estimator
accuracy.

Definition 5.1 (Bias of an estimator). An estimator θ̂ of θ is said to be unbiased
if and only if

EDN
[θ̂] = θ

Otherwise, it is said to be biased with bias

Bias[θ̂] = EDN
[θ̂]− θ (3.5.8)

Definition 5.2 (Variance of an estimator). The variance of an estimator θ̂ of θ is
the variance of its sampling distribution

Var
[
θ̂
]

= EDN
[(θ̂ − E[θ̂])2]

3please note that we refer to the θ̂ distribution and not to the z distribution
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Definition 5.3 (Standard error). The square root of the variance√
Var

[
θ̂
]

(3.5.9)

is called the standard error of the estimator θ̂.

An unbiased estimator is an estimator that, on average, has the right value
but averaged over what? It is important to retain that this average is over different
samples of fixed size N , i.e. different realisations of the dataset DN as made explicit
by the notation EDN

[θ̂], visualised in Figure 3.2 and simulated in Section (3.4.1).
The unbiasedness of an estimator implies that the deviations of the estimations with
respect to the parameter are not systematically up or down but that in repeated
samples they average out to zero.

Note that different unbiased estimators may exist for a parameter θ. Also, a
biased estimator with a known bias (i.e. not depending on θ) is equivalent to an
unbiased estimator since we can easily compensate for the bias. We will see in
Section 3.5.3 that for some specific estimators it is possible to derive analytically
the bias. Unfortunately, in general, the bias is not measurable since this would
require the knowledge of θ which is in fact the target of our estimation procedure:
nevertheless, the notion of bias is an important theoretical quantity to reason about
the accuracy of an estimation process.

Sometimes we are accurate (e.g. unbiased) in estimating θ though we are inter-

ested in f(θ). Given a generic transformation f(·), if θ̂ is unbiased for θ this does

not imply that that f(θ̂) is unbiased for f(θ) as well. This implies, for instance,
that the standard error σ̂ is not an unbiased estimator of standard deviation σ
despite σ̂2 being an unbiased estimator of σ2.

3.5.2 Estimation and the game of darts

An intuitive manner of visualising the notion of sampling distribution of an esti-
mator (and the related concepts of bias and variance) is to use the analogy of the
darts game.

The unknown parameter θ can be seen as the darts game target and the estimator
θ̂ as a player. Figure 3.3 shows the target (black dot) together with the distribution
of the draws of two different players: the C (cross) player and the R (round) player.
In terms of our analogy the cross player/estimator has small variance but large bias,
while the round one has small bias and large variance. Which one is the best?

Now it’s your turn to draw the shot distribution of a player with low bias and
low variance and of a player with large bias and large variance.

3.5.3 Bias and variance of µ̂

This section shows that for a generic r.v. z and an i.i.d. dataset DN , the sample
average µ̂ is an unbiased estimator of the mean E[z].

Consider a random variable z ∼ Fz(·). Let µ and σ2 the mean and the variance
of Fz(·), respectively. Suppose we have observed the i.i.d. sample DN ← Fz.
From (3.3.4) we obtain

EDN
[µ̂] = EDN

[
1

N

N∑
i=1

zi

]
=

∑N
i=1E[zi]

N
=
Nµ

N
= µ (3.5.10)

This means that the sample average estimator is not biased, whatever the distribu-
tion Fz(·) is. And what about its variance? Since according to the i.i.d. assumption
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Figure 3.3: The dart analogy: the target is the unknown parameter, the round dots
represent some realisations of the estimator R, while the crosses represent some
realisations of the estimator C.

Cov[zi, zj ] = 0, for i 6= j, from (2.19.92) we obtain that the variance of the sample
average estimator is

Var [µ̂] = Var

[
1

N

N∑
i=1

zi

]
=

1

N2
Var

[
N∑
i=1

zi

]
=

1

N2
Nσ2 =

σ2

N
. (3.5.11)

Note that Var [µ̂] is also known as the sampling variance (i.e. the variance due to
sampling), not to be confused with the sample variance quantity (3.3.5) (i.e. the
variance of the sample).

Going back to the darts game analogy, the estimator µ̂ behaves like the ”round
player” in Figure 3.3, which is centred over the target (unbiased) yet with some
variability.

You can visualise the bias and variance of the sample average estimator by
running the Shiny dashboard estimation.R presented in Section 3.4.

3.5.4 Bias of the estimator σ̂2

Let us now study the bias of the sample variance σ̂2, i.e. the estimator of the
variance of z.

EDN
[σ̂2] = EDN

[
1

N − 1

N∑
i=1

(zi − µ̂)2

]
(3.5.12)

=
N

N − 1
EDN

[
1

N

N∑
i=1

(zi − µ̂)2

]
(3.5.13)

=
N

N − 1
EDN

[(
1

N

N∑
i=1

z2
i

)
− µ̂2

]
(3.5.14)

Since E[z2] = µ2 + σ2 and Cov[zi, zj ] = 0, the first term inside the E[·] is

EDN

[(
1

N

N∑
i=1

z2
i

)]
=

1

N

N∑
i=1

EDN

[
z2
i

]
=

1

N
N(µ2 + σ2)
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Since E

[(∑N
i=1 zi

)2
]

= N2µ2 +Nσ2 the 2nd term is

EDN
[µ̂2] =

1

N2
EDN

( N∑
i=1

zi

)2
 =

1

N2
(N2µ2 +Nσ2) = µ2 + σ2/N

It follows that

EDN
[σ̂2] =

N

N − 1

(
(µ2 + σ2)− (µ2 + σ2/N)

)
=

N

N − 1

(
N − 1

N
σ2

)
= σ2

This result justifies our definition (3.3.5). Once the term N − 1 is inserted at the
denominator, the sample variance estimator is not biased.

Some points are worth considering:

• The results (3.5.10),(3.5.11) and (3.5.12) are independent of the family of the
distribution F (·).

• According to (3.5.11), the variance of µ̂ is 1/N times the variance of z. This is
a formal justification of the reason why taking averages on a large number of
observations is recommended: the larger N , the smaller is Var [µ̂], so a bigger
N for a given σ2 implies a better estimate of µ.

• According to the central limit theorem (Section D.8), under quite general
conditions on the distribution Fz, the distribution of µ̂ will be approximately
normal as N gets large, which we can write as

µ̂ ∼ N (µ, σ2/N) for N →∞ (3.5.15)

• The estimated standard error
σ̂√
N

(3.5.16)

is the estimated version of the standard error4 (3.5.9) of the sample mean
µ̂. It is obtained from (3.5.9) and (3.5.11) by approximating the (unknown)
standard deviation σ with σ̂, the squared root of the sample variance (3.3.5).
This quantity is a common measure of statistical accuracy since it summarises
the variability of the sample average due to random sampling. Since µ̂ is not
biased, if the conditions (3.5.15) apply (i.e. for large N) then

Prob

{
µ̂− 2

σ̂√
N
≤ µ ≤ µ̂+ 2

σ̂√
N

}
= 0.95

i.e. we expect µ̂ to be less than two estimated standard errors away from
µ about 95% of the time (see Table 2.4). Note that this holds whatever the
distribution of the r.v. z.

Script

You can visualise the bias and variance of the sample variance estimator by run-
ning the R script Estimation/sam dis2.R or by running the Shiny dashboard
estimation.R introduced in Section 3.4..

4not to be confused with the standard deviation of z
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3.5.5 A tongue-twister exercise

It sounds like a tongue-twister but it is important that the reader takes some time
to reason about the substantial difference between two quantities like

1. the variance of an estimator and

2. the estimator of the variance.

The first quantity is denoted by Var
[
θ̂
]
, is a real number and measures the accuracy

of an estimator. It has been introduced in Section 3.5.
The second is denoted σ̂2, is a random quantity since it is an estimator and its

properties (e.g. bias) have been discussed in Section 3.5.4.
Now, if you understand the difference between the two quantities above, you

could reason about Var
[
σ̂2], which is nothing more than the variance of the esti-

mator of the variance. Clear, isn’t it? And what about the estimator of the variance
of the estimator of the variance?

3.5.6 Bias/variance decomposition of MSE

Bias and variance are two independent criteria to assess the quality of an estimator.
As shown in Figure 3.3 we could have two estimators behaving in opposite ways:
the first has large bias and low variance, while the second has large variance and
small bias. How can we choose among them? We need a measure able to combine
or merge the two to a single criterion. This is the role of the mean-square error
(MSE) measure.

When θ̂ is a biased estimator of θ, its accuracy is usually assessed by its MSE
rather than simply by its variance. The MSE is defined by

MSE = EDN
[(θ − θ̂)2]

For a generic estimator, it can be shown that

MSE = (E[θ̂]− θ)2 + Var
[
θ̂
]

=
[
Bias[θ̂]

]2
+ Var

[
θ̂
]

(3.5.17)

i.e., the mean-square error is equal to the sum of the variance and the squared bias
of the estimator . Here it is the analytical derivation

MSE = EDN
[(θ − θ̂)2] = EDN

[(θ − E[θ̂] + E[θ̂]− θ̂)2] = (3.5.18)

= EDN
[(θ − E[θ̂])2] + EDN

[(E[θ̂]− θ̂)2] + EDN
[2(θ − E[θ̂])(E[θ̂]− θ̂)] =

(3.5.19)

= EDN
[(θ − E[θ̂])2] + EDN

[(E[θ̂]− θ̂)2] + 2(θ − E[θ̂])(E[θ̂]− E[θ̂]) =
(3.5.20)

= (E[θ̂]− θ)2 + Var
[
θ̂
]

(3.5.21)

This decomposition is typically called the bias-variance decomposition. Note that
if an estimator is unbiased, then its MSE is equal to its variance.

3.5.7 Consistency

Suppose that the sample data contains N independent observations z1, . . . , zN of
a univariate random variable. Let the estimator of θ based on N observations be
denoted θ̂N . As N becomes larger, we might reasonably expect that θ̂N improves
as an estimator of θ (in other terms it gets closer to θ). The notion of consistency
formalises this concept.
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Definition 5.4. The estimator θ̂N is said to be weakly consistent if θ̂N converges
to θ in probability, that is

∀ε > 0 lim
N→∞

Prob
{
|θ̂N − θ| ≤ ε

}
= 1

Definition 5.5. The estimator θ̂N is said strongly consistent if θ̂N converges to θ
with probability 1 (or almost surely).

Prob
{

lim
N→∞

θ̂N = θ
}

= 1

For a scalar θ the property of convergence guarantees that the sampling distribu-
tion of θ̂N becomes less disperse as N →∞. In other terms a consistent estimator
is asymptotically unbiased. It can be shown that a sufficient condition for weak

consistency of unbiased estimators θ̂N is that Var
[
θ̂N

]
→ 0 as N →∞.

It is important to remark that the property of unbiasedness (for finite-size sam-
ples) and consistency are largely unrelated.

Exercise

Consider an estimator of the mean that takes into consideration only the first 10
sample points, whatever the total number N > 10 of observations is. Is such an
estimator consistent?

•

3.5.8 Efficiency

Suppose we have two unbiased and consistent estimators. How to choose between
them?

Definition 5.6 (Relative efficiency). Let us consider two unbiased estimators θ̂1

and θ̂2. If

Var
[
θ̂1

]
< Var

[
θ̂2

]
we say that θ̂1 is more efficient than θ̂2.

If the estimators are biased, typically the comparison is made on the basis of
the mean square error.

Exercise

Suppose z1, . . . , zN is a random sample of observations from a distribution with
mean θ and variance σ2. Study the unbiasedness and the consistency of the three
estimators of the mean µ:

θ̂1 = µ̂ =

∑N
i=1 zi
N

θ̂2 =
Nθ̂1

N + 1

θ̂3 = z1

•



3.6. THE HOEFFDING’S INEQUALITY 89

3.6 The Hoeffding’s inequality

A probabilistic measure of the discrepancy between the estimator µ̂ and the quantity
µ = E[z] to be estimated is returned by the Hoeffding’s inequality.

Theorem 6.1. [94] Let z1, . . . , zN be independent bounded random variables such
that zi falls in the interval [ai, bi] with probability one. Let their sum be SN =∑N
i=1 zi. Then for any ε > 0 we have

Prob {|SN − E[SN ]| > ε} ≤ exp

{
−2ε2/

N∑
i=1

(bi − ai)2

}

Corollary 6.2. If the variables z1, . . . , zN are independent and identically dis-
tributed, the following bound on the discrepancy between the sample mean µ̂ =∑N

i=1 zi
N and the expected value E[z] holds

Prob {|µ̂− E[z]| > ε} ≤ exp
{
−2Nε2/(b− a)2

}
Assume that δ is a confidence parameter, that is we are 100(1 − δ)% confident

that the estimate µ̂ is within the accuracy ε of the true expectation. It is possible
to derive the expression

ε(N) =

√
(b− a)2 log(2/δ)

2N

which measures with confidence 1 − δ how the sample mean µ̂, estimated on the
basis of N points, is close to the expectation E[z]. We can also determine the
number of observations N necessary to obtain an accuracy ε and a confidence δ by
using the relation

N >
(b− a)2 log(2/δ)

2ε2

Hoeffding’s bound is a general bound that only relies on the assumption that
sample points are drawn independently. Bayesian bounds are another example of
statistical bounds which give tighter results under the assumption that the examples
are drawn from a normal distribution.

3.7 Sampling distributions for Gaussian r.v.s

The results in Section 3.5 are independent of the type of distribution function Fz.
Additional results are available in the specific case of a normal random variable.

Let z1, . . . , zN be i.i.d. realisation of z ∼ N (µ, σ2) and let us consider the
following sample statistics

µ̂ =
1

N

N∑
i=1

zi, ŜS =

N∑
i=1

(zi − µ̂)2, σ̂2 =
ŜS

N − 1

It can be shown that the following relations hold

• µ̂ ∼ N (µ, σ2/N) and N(µ̂−µ)2 ∼ σ2χ2
1 where the χ2 distribution is presented

in Appendix D.2.2.

• zi − µ ∼ N (0, σ2), so
∑N
i=1(zi − µ)2 ∼ σ2χ2

N .

•
∑N
i=1(zi − µ)2 = ŜS +N(µ̂− µ)2.
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• ŜS ∼ σ2χ2
N−1 or equivalently (N−1)σ̂2

σ2 ∼ χ2
N−1. See R script Estimation/sam dis2.R.

•
√
N(µ̂− µ)/σ̂ ∼ TN−1 where T stands for the Student distribution (Section

D.2.3).

• if E[|z− µ|4] = µ4 then Var
[
σ̂2] = 1

N

(
µ4 − N−3

N−1σ
4
)

.

3.8 The principle of maximum likelihood

Maximum-likelihood is a well-known strategy used in statistics to design an esti-
mator, i.e. the algorithm g in (3.4.7). Its rationale is to transform a problem of
estimation into a problem of optimisation. Let us consider

1. a density distribution pz(z, θ) which depends on a parameter θ ∈ Θ,

2. a dataset DN = {z1, z2, . . . , zN} i.i.d. drawn from this distribution.

According to (2.13.58), the joint probability density of the i.i.d. dataset is the
product

pDN
(DN , θ) =

N∏
i=1

pz(zi, θ) = LN (θ) (3.8.22)

where for a fixed DN , LN (·) is a function of θ and is called the empirical likelihood
of θ given DN .

The principle of maximum likelihood was first used by Lambert around 1760 and
by D. Bernoulli about 13 years later. It was detailed by Fisher in 1920. The idea
is simple: given an unknown parameter θ and a sample data DN , the maximum
likelihood estimate θ̂ is the value for which the empirical likelihood LN (θ) has a
maximum

θ̂ml = arg max
θ∈Θ

LN (θ)

The estimator θ̂ml is called the maximum likelihood estimator (m.l.e.). In prac-
tice, it is usual to consider the log-likelihood lN (θ) instead of LN (θ). Since log(·) is
a monotone function, we have

θ̂ml = arg max
θ∈Θ

LN (θ) = arg max
θ∈Θ

log(LN (θ)) = arg max
θ∈Θ

lN (θ) (3.8.23)

The likelihood function quantifies the relative abilities of the various parameter
values to explain the observed data. The principle of m.l. is that the value of the
parameter under which the obtained data would have had the highest probability of
arising must be intuitively our best estimator of θ. In other terms the likelihood can
be considered a measure of how plausible the parameter values are in light of the
data. Note, however, that the likelihood function is NOT a probability function:
for instance, in general, it does not integrate to 1 (with respect to θ). In terms
of conditional probability, LN (θ) represents the probability of the observed dataset
given θ and not the probability of θ (which is not a r.v. in the frequentist approach)
given DN .

Example

Consider a binary variable (e.g. a coin tossing) which takes z = 15 times the value
1 (e.g. “Tail”) in N = 40 trials. Suppose that the probabilistic model underlying
the data is Binomial (Section D.1.2) with an unknown probability θ = p. We want
to estimate the unknown parameter θ = p ∈ [0, 1] on the basis of the empirical
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Figure 3.4: Likelihood function

evidence from the N trials. The likelihood L(p) is a function of (only) the unknown
parameter p. By applying the maximum likelihood technique we have

θ̂ml = p̂ = arg max
p

LN (p) = arg max
p

(
N

z

)
pz(1−p)(N−z) = arg max

p

(
40

15

)
p15(1−p)(25)

Figure 3.4 plots L(p) versus p ∈ [0, 1] (R script Estimation/ml bin.R). The
most likely value of p is the value where L(·) attains its maximum. According to
Figure 3.4 this value is p̂ = z/N . The log-likelihood for this model is

lN (p) = logLN (p) = log

(
N

z

)
+ z log(p) + (N − z) log(1− p) =

= log

(
40

15

)
+ 15 log p+ 25 log(1− p)

The reader can analytically find the maximum of this function by differentiating
l(p) with respect to p.

•

3.8.1 Maximum likelihood computation

In many situations the log-likelihood lN (θ) is particularly well behaved in being
continuous with a single maximum away from the extremes of the range of variation
of θ. Then θ̂ml is obtained simply as the solution of

∂lN (θ)

∂θ
= 0

subject to
∂2lN (θ)

∂θ2

∣∣∣
θ̂ml

< 0

to ensure that the identified stationary point is a maximum.

3.8.2 Maximum likelihood in the Gaussian case

Let DN be a random sample from the r.v. z ∼ N (µ, σ2). It is possible to derive
analytically the expression of the maximum likelihood estimators of the mean and
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variance of z. According to (3.8.22), the likelihood of the N observations is

LN (µ, σ2) =

N∏
i=1

pz(zi, µ, σ
2) =

N∏
i=1

(
1√

2πσ2

)
exp

[
−(zi − µ)2

2σ2

]
and the log-likelihood is

lN (µ, σ2) = logLN (µ, σ2) = log

[
N∏
i=1

pz(zi, µ, σ
2)

]
=

=

N∑
i=1

log pz(zi, µ, σ
2) = −

∑N
i=1(zi − µ)2

2σ2
+N log

(
1√

2πσ2

)
Note that, for a given σ, maximising the log-likelihood is equivalent to minimising
the sum of squares of the difference between zi and the mean. Taking the derivatives
with respect to µ and σ2 and setting them equal to zero, we obtain

µ̂ml =

∑N
i=1 zi
N

= µ̂ (3.8.24)

σ̂2
ml =

∑N
i=1(zi − µ̂ml)

2

N
6= σ̂2 (3.8.25)

Note that the m.l. estimator (3.8.24) of the mean coincides with the sample
average (3.3.4) but that the m.l. estimator (3.8.25) of the variance differs from the
sample variance (3.3.5) in terms of the denominator.

In the multivariate Normal case, where z is a vector with [n, 1] mean µ and [n, n]
covariance matrix Σ, the maximum likelihood estimators are

µ̂ml =

∑N
i=1 zi
N

(3.8.26)

Σ̂ml =

∑N
i=1(zi − µ̂ml)(zi − µ̂ml)

T

N
(3.8.27)

where zi and µ̂ are [n, 1] vectors.

Exercise

• Let z ∼ U(0,M) follow a uniform distribution and Fz → DN = {z1, . . . , zN}.
Find the maximum likelihood estimator of M .

• Let z have a Poisson distribution, i.e.

pz(z, λ) =
e−λλz

z!

If Fz(z, λ)→ DN = {z1, . . . , zN}, find the m.l.e. of λ

•

In case of generic distributions Fz computational difficulties may arise: for ex-
ample in some cases no explicit solution might exist for ∂lN (θ)/∂θ = 0. Iterative
numerical methods must be used in this case. The computational cost becomes
heavier if we consider a vector of parameters instead of a scalar θ or when there are
several relative maxima of the function lN .

Another complex situation occurs when lN (θ) is discontinuous, or have a dis-
continuous first derivative, or a maximum at an extremal point.
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R script

Suppose we know the analytical form of a one/dimensional function f(x) : I → R
but not the analytical expression of its extreme points. In this case numerical
optimisation methods can be applied. The implementation of some continuous
optimisation routines is available in the R statistical tool.

Consider for example the function f(x) = (x − 1/3)2 and I = [0, 1]. The value
of the point x where f takes a minimum value can be approximated numerically by
this set of R commands

f <- function (x,a) (x-a)^2

xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)

xmin

These routines may be applied to solve the problem of maximum likelihood
estimation which is nothing more than a particular instance of an optimisation
problem. Let DN be a random sample drawn from z ∼ N (µ, σ2). The negative
log-likelihood function of the N observations can be written in R by

eml <- function(m,D,var) {

N<- length(D)

Lik<-1

for (i in 1:N)

Lik<-Lik*dnorm(D[i],m,sqrt(var))

-log(Lik)

}

and the numerical minimisation of −lN (µ, s2) for a given σ = s in the interval
I = [−10, 10] can be written in R as

xmin<-optimize( eml,c(-10,10),D=DN,var=s)

In order to run the above code and compute numerically the m.l. solution we invite
the reader to run the R script Estimation/emp ml.R.

•

3.8.3 Cramer-Rao lower bound

Assume that θ is a scalar parameter, that the first two derivatives of LN (θ) with re-
spect to θ exist for all θ and that certain operations of integration and differentiation
may be interchanged. Let θ̂ be an unbiased estimator of θ and lN (θ) = loge[LN (θ)].
Suppose that the regularity condition

E

[
∂lN (θ)

∂θ

]
= 0 (3.8.28)

holds where the quantity ∂l(θ)/∂θ is called score. The Cramer-Rao bound is a lower

bound to the variance of the estimator θ̂ which states that

Var
[
θ̂
]
≥ 1

E

[(
∂lN (θ)
∂θ

)2
] = − 1

NE
[(

∂2lN (θ)
∂θ2

)] =
1

IN

where the denominator term IN is known as the Fisher information. Note that
∂2lN (θ)
∂θ2 is the second derivative of lN (·) and, as such, it defines the curvature of the

log-likelihood function. At the maximum θ̂, the second derivative takes a negative
value. Also, the larger its absolute value the larger is the curvature around the
function peak and then the lower is the uncertainty about the m.l. estimation [130].

An estimator having a variance as low as 1/IN is called a Minimum Variance
Bound (MVB) estimator.
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Example

Consider a r.v. z ∼ N (µ, σ2) where σ2 is known and the unknown parameter is
θ = µ. Let us consider the bound on the variance of the estimator (3.8.24). Since

∂ log p(z, θ)

∂θ
=
z − θ
σ2

∂2 log p(z, θ)

∂θ2
= − 1

σ2

It follows that

Var
[
θ̂
]
≥ 1

N
σ2

=
σ2

N

From (3.5.11) it derives then that the m.l. estimator (3.8.24) of the mean µ is
minimum variance.

•

3.8.4 Properties of m.l. estimators

Under the (strong) assumption that the probabilistic model structure is known, the
maximum likelihood technique features the following properties:

• θ̂ml is asymptotically unbiased but usually biased in small-size samples (e.g.
σ̂2

ml in (3.8.25)).

• θ̂ml is consistent.

• If θ̂ml is the m.l.e. of θ and γ(·) is a monotone function then γ(θ̂ml) is the
m.l.e. of γ(θ).

• If γ(·) is a non/monotonic function, then even if θ̂ml is an unbiased estimator

of θ, the m.l.e. γ(θ̂ml) of γ(θ) is usually biased.

• the variance of θ̂ml is often difficult to determine. For large-size samples, we
can use as approximation(

−E
[
∂2lN
∂θ2

])−1

or

(
−∂

2lN
∂θ2

∣∣∣
θ̂ml

)−1

• θ̂ml is asymptotically normally distributed, that is

θ̂ml ∼ N (θ, [IN (θ)]−1), N →∞

• if the density used in (3.8.22) is not the true pz but an approximation p̂z(θ)
it can be shown that

θ̂ml → arg min
θ
KL(pz, p̂z(θ)), N →∞

where KL is the Kullback-Leibler divergence (Section 2.11.3) between the
true density and the approximation. This means that maximum likelihood
returns the best parametric approximation of the real density pz inside the
parametric class p̂z(θ).
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Figure 3.5: Horseshoes game as an analogy of interval estimation

3.9 Interval estimation

Unlike point estimation which is based on a one-to-one mapping from the space of
data to the space of parameters, interval estimation maps DN to an interval of Θ.
A point estimator is a function which, given a dataset DN generated from Fz(z, θ),
returns an estimate of θ. An interval estimator is a transformation which, given a
dataset DN , returns an interval estimate [θ, θ̄] of θ. While an estimator is a random
variable, an interval estimator is a random interval. Let θ and θ̄ be the random
lower and the upper bounds respectively. While an interval either contains or not
a certain value, a random interval has a certain probability of containing a value.
Suppose that

Prob
{
θ ≤ θ ≤ θ̄

}
= 1− α α ∈ [0, 1] (3.9.29)

then the random interval [θ, θ̄] is called a 100(1 − α)% confidence interval of θ.
If (3.9.29) holds, we expect that by repeating the sampling of DN and the con-
struction of the confidence interval many times, our confidence interval will contain
the true θ at least 100(1 − α)% of the time. Notice, however, that being θ a fixed
unknown value, at each realisation DN the interval [θ, θ̄] either contains or not the
true θ. Therefore, from a frequentist perspective, it is erroneous to think that 1−α
is the probability of θ belonging to the interval [θ, θ̄] computed for a given DN . In
fact, 1 − α is not the probability of the event θ ∈ [θ, θ̄] (since θ is fixed) but the
probability that the interval estimation procedure returns a (random) interval [θ, θ̄]
containing θ.

While a point estimator is characterised by bias and variance (Section 3.5), an
interval estimator is characterised by its endpoints θ and θ̄ (or its width) and by
its confidence α. In Figure 3.3 we used an analogy between point estimation and
dart game to illustrate the bias/variance notions. In the case of interval estimation,
the best analogy is provided by the horseshoes game5 (Figure 3.5). A horseshoe
player is like an interval estimator and her interval estimation corresponds to the
tossing of a horseshoe. The horseshoe width corresponds to the interval size and
the probability of encircling the stake corresponds to the confidence α.

3.9.1 Confidence interval of µ

Consider a random sample DN of a r.v. z ∼ N (µ, σ2) where σ2 is known. Suppose
we want to estimate µ with the estimator µ̂. From Section 3.7 we have that µ̂ ∼

5https://en.wikipedia.org/wiki/Horseshoes

https://en.wikipedia.org/wiki/Horseshoes
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N (µ, σ2/N) is Gaussian distributed. From (2.12.51) it follows that

µ̂− µ
σ/
√
N
∼ N (0, 1)

and consequently, according to the Definition 12.7

Prob

{
−zα/2 ≤

µ̂− µ
σ/
√
N
≤ zα/2

}
= 1− α (3.9.30)

Prob

{
µ̂− zα/2

σ√
N
≤ µ ≤ µ̂+ zα/2

σ√
N

}
= 1− α (3.9.31)

where zα is the upper critical point of the standard Gaussian distribution. It follows
that θ = µ̂−zασ/

√
N is a lower 1−α confidence bound for µ while θ̄ = µ̂+zασ/

√
N

is an upper 1−α confidence bound for µ. By varying α we can vary the width and
the confidence of the interval.

Example

Let z ∼ N (µ, 0.01) and DN = {10, 11, 12, 13, 14, 15}. We want to estimate the
confidence interval of µ with level α = 0.1. Since N = 6, µ̂ = 12.5, and

ε = zα/2σ/
√
N = 1.645 · 0.01/

√
6 = 0.0672

the 90% confidence interval for the given DN is

{µ : |µ̂− µ| ≤ ε} = {12.5− 0.0672 ≤ µ ≤ 12.5 + 0.0672}

•

R script

The R script Estimation/confidence.R allows the test of the formula (3.9.30) by
simulation. The user sets µ, σ, N , α and a number of iterations Niter.

The script generates Niter times DN ∼ N (µ, σ2) and computes µ̂. The script
returns the percentage of times that

µ̂−
zα/2σ√
N

< µ < µ̂+
zα/2σ√
N

This percentage versus the number of iterations is plotted in Figure 3.6 (R script
Estimation/confidence.R). We can easily check that this percentage converges to
100(1− α)% for Niter →∞.

•

Now consider the interval of confidence of µ when the variance σ2 is not known.
Let µ̂ and σ̂2 be the estimators of µ and σ2 computed on the basis of the i.i.d.
dataset DN . From Section 3.7, it follows that

µ̂− µ√
σ̂2

N

∼ TN−1

Analogously to (3.9.31) we have

Prob

{
µ̂− tα/2

σ√
N
≤ µ ≤ µ̂+ tα/2

σ√
N

}
= 1− α (3.9.32)

where tα is the upper critical point of the Student distribution.
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Figure 3.6: Fraction of times that the interval of confidence contains the parameter
µ vs. the number of repetitions for α = 0.1

Example

Let z ∼ N (µ, σ2), with σ2 unknown and DN = {10, 11, 12, 13, 14, 15}. We want to
estimate the confidence region of µ with level α = 0.1. We have µ̂ = 12.5, σ̂2 = 3.5.
According to (3.9.32) we have

ε = t{α/2,N−1}σ̂/
√
N = 2.015 ∗ 1.87/

√
6 = 1.53

The (1− α) confidence interval of µ is

µ̂− ε < µ < µ̂+ ε

•

Example

We want to estimate θ, the proportion of people who support the politics of Mr.
Berlusconi amongst a very large population. We want to define how many interviews
are necessary to have a confidence interval of 6% width with a significance of 5%.
We interview N persons and estimate θ as

θ̂ =
x1 + · · ·+ xN

N
=
S

N

where xi = 1 if the ith person supports Berlusconi and xi = 0 otherwise. Note that
S is a binomial variable. We have

E[θ̂] = θ, Var
[
θ̂
]

= Var [S/N ] =
N(θ)(1− θ)

N2
=
θ(1− θ)
N

≤ 1

4N

If we approximate the distribution of θ̂ by N (θ, θ(1−θ)N ) it follows that θ̂−θ√
θ(θ−1)N

∼
N (0, 1). The following relation holds

Prob
{
θ̂ − 0.03 ≤ θ ≤ θ̂ + 0.03

}
=

Prob

{
− 0.03√

θ(1− θ)/N
≤ θ̂ − θ√

θ(1− θ)/N
≤ 0.03√

θ(1− θ)/N

}
=

Φ

(
0.03√

θ(1− θ)/N

)
− Φ

(
− 0.03√

θ(1− θ)/N

)
≥

≥ Φ(0.03
√

4N)− Φ(−0.03
√

4N)
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In order to have this probability to be at least 0.95 we need 0.03
√

4N ≥ 1.96 or
equivalently N ≥ 1068.

•

3.10 Combination of two estimators

Consider two unbiased estimators θ̂1 and θ̂2 of the same parameter θ

E[θ̂1] = θ E[θ̂2] = θ

having equal and non zero variance

Var
[
θ̂1

]
= Var

[
θ̂2

]
= v

and being uncorrelated, i.e. Cov[θ̂1, θ̂2] = 0. Let θ̂cm be the combined estimator

θ̂cm =
θ̂1 + θ̂2

2

This estimator has the nice properties of being unbiased

E[θ̂cm] =
E[θ̂1] + E[θ̂2]

2
= θ (3.10.33)

and with a smaller variance than the original estimators

Var
[
θ̂cm

]
=

1

4
Var

[
θ̂1 + θ̂2

]
=

Var
[
θ̂1

]
+ Var

[
θ̂2

]
4

=
v

2
(3.10.34)

This trivial computation shows that the simple average of two unbiased estimators
with a non zero variance returns a combined estimator with reduced variance.

3.10.1 Combination of m estimators

Here, we report the general formula of the linear combination of a number m of
estimators [156, 158]. Assume we want to estimate the unknown parameter θ by

combining a set of m estimators {θ̂j}, j = 1, . . . ,m. Let

E[θ̂j ] = µj Var
[
θ̂j

]
= vj Bias[θ̂j ] = bj

be the expected values, the variances and the bias of the m estimators, respectively.
We are interested in estimating θ by forming a linear combination

θ̂cm =

m∑
j=1

wj θ̂j = wT θ̂ (3.10.35)

where θ̂ = [θ̂1, . . . , θ̂m]T is the vector of estimators and w = [w1, . . . , wm]T is the
weighting vector.

The mean-squared error of the combined system is

MSE = E[(θ̂cm − θ)2] = E[(wT θ̂ − E[wT θ̂])2] + (E[wT θ̂]− θ)2

= E[(wT (θ̂ − E[θ̂]))2] + (wTµ− θ)2 =

= wTΩw + (wTµ− θ)2
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where Ω is a [m×m] covariance matrix whose ijth term is

Ωij = E[(θ̂i − µi)(θ̂j − µj)]

and µ = (µ1, . . . , µm)T is the vector of expected values. Note that the MSE error
has a variance term (dependent on the covariance of the single estimators) and a
bias term (dependent on the bias of the single estimators).

3.10.1.1 Linear constrained combination

A commonly used constraint is

m∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,m (3.10.36)

This means that the combined estimator is unbiased if the individual estimators are
unbiased. Let us write w as

w = (uT g)−1g

where u = (1, . . . , 1)T is an m-dimensional vector of ones, g = (g1, . . . , gm)T and
gj > 0,∀j = 1, . . . ,m.

The constraint can be enforced in minimising the MSE by using the Lagrangian
function

L = wTΩw + (wTµ− θ)2 + λ(wTu− 1)

with λ Lagrange multiplier.
The optimum is achieved if we set

g∗ = [Ω + (µ− θu)(µ− θu)T ]−1u

With unbiased estimators (µ = θ) we obtain

g∗ = Ω−1u

and with uncorrelated estimators

g∗j =
1

vj
j = 1, . . . ,m (3.10.37)

This means that the optimal term g∗j of each estimator is inversely proportional to
its own variance.

3.11 Testing hypothesis

Hypothesis testing is together with estimation a major area of statistical inference.
A statistical hypothesis is an assertion or conjecture about the distribution of one
or more random variables. A test of a statistical hypothesis is a rule or procedure
for deciding whether to reject such assertion on the basis of the observed data. But
how can we be sure that what we observed is not merely a lucky draw, unlikely to
replicated in future samples ? The basic idea is to formulate some statistical hy-
pothesis (also called null hypothesis) and look to see whether observed data provides
enough evidence to reject the hypothesis. Observed values that are very unlikely
given the null hypothesis will be considered as evidence against the hypothesis in a
sort of stochastic version of the mathematic “proof by contradiction”. Examples of
hypothesis tests follow:
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• Consider the model of the traffic in the boulevard. Suppose that the measures
of the inter-arrival times are DN = {10, 11, 1, 21, 2, . . . } seconds. Can we say
that the mean inter-arrival time θ is different from 10?

• We want to know the effect of a drug on rats’ survival to cancer. We randomly
divide some rats in two groups and we administrate a drug only to one of them.
Is the survival rate of the groups the same?

• Consider the grades of two different school sections. Section A had {15, 10, 12, 19, 5, 7}.
Section B had {14, 11, 11, 12, 6, 7}. Can we say that Section A had better
grades than Section B?

• Consider two protein coding genes and their expression levels in a cell. Are
the two genes differentially expressed ?

A statistical test is a procedure that aims to answer such questions.

3.11.1 Types of hypothesis

We start by declaring the working (basic, null) hypothesis H to be tested, in the
form θ = θ0 or θ ∈ ω ⊂ Θ, where θ0 or ω are given.

The hypothesis can be

simple: this means that it fully specifies the distribution of the r.v. z.

composite: this means that it partially specifies the distribution of z.

For example if DN is a random sample of size N drawn from N (µ, σ2) the
hypothesis H : µ = µ0, σ = σ0, (with µ0 and σ0 known values) is simple while the
hypothesis H : µ = µ0 is composite since it leaves open the value of σ in (0,∞).

3.11.2 Types of statistical test

Suppose we have sampled a dataset DN = {z1, . . . , zN} from a distribution Fz and
we have declared a null hypothesis H about F . The three most common types of
statistical test are:

Pure significance test: dataDN are used to assess the inferential evidence against
H.

Significance test: the inferential evidence against H is used to judge whether H
is inappropriate. This test returns a decision rule for rejecting or not rejecting
H.

Hypothesis test: data DN are used to assess the hypothesis H against a specific
alternative hypothesis H̄.This test returns a rule for rejecting H in favour of
H̄.

The three tests will be discussed in the following sections.

3.11.3 Pure significance test

Consider a simple null hypothesis H. Let t(DN ) be a statistic (i.e. a function of the
dataset) such that the larger its value the more it casts doubt on H. The quantity
t(DN ) is called test statistic or discrepancy measure. Suppose that the distribution
of t(DN ) under H is known. This is possible since the function t(·) is fixed by
the user and the simple hypothesis H entirely specifies the distribution of z and
consequently the distribution of t(DN ). Let tN = t(DN ) the observed value of t
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calculated on the basis of the sample data DN . Let us define the p-value quantity
as

p = Prob {t(DN ) > tN |H} (3.11.38)

i.e. the probability of observing a statistic greater than tN if the hypothesis H were
true. Note that in the expression (3.11.38), the term t(DN ) is a random variable
having a known distribution, while tN is a value computed on the basis of the
observed dataset.

If the p quantity is small then the sample data DN are highly inconsistent
with H, and p (significance probability or significance level) is the measure of such
inconsistency. If p is small, then either a rare event has occurred or perhaps H is
not true. In other terms, if H were true, the quantity p would be the proportion of
situations where we would observe a degree of inconsistency, at least to the extent
represented by tN . The smaller the p-value, the stronger the evidence against H6.

Note that p depends on DN since different DN would yield different values of
tN and consequently different values of p ∈ [0, 1]. Moreover, it can be shown that,
if the null hypothesis is true, the p-value has a Uniform U [0, 1] distribution. Also,
in a frequentist perspective, we cannot say that p is the probability that H is true
but rather that p is the probability that the dataset DN is observed given that H is
true.

3.11.4 Tests of significance

The test of significance proposes the following decision rule: if p is less than some
stated value α, we reject H. Once a critical level α is chosen, and the dataset DN

is observed, the rule rejects H at level α if

P{t(DN ) > tα|H) = α (3.11.39)

This is equivalent to choosing some critical value tα and to reject H if tN > tα.
This implies the existence of two regions in the space of sample data:

critical region: this is the set of values of DN

S0 = {DN : t(DN ) > tα}

such that if DN ∈ S0, we reject the null hypothesis H.

non-critical region: this is the set of values of DN such that there is no reason
to reject H on the basis of the level-α test.

The principle is that we will accept H unless what we observed has a too small
probability of happening when H is true. The upper bound of this probability is α,
i.e. the significance level α is the highest p-value for which we reject H. Note that
the p-value changes with the observed data (i.e. it is a random variable) while α is
a level fixed by the user.

Example

LetDN consist ofN independent observations of x ∼ N (µ, σ2), with known variance
σ2. We want to test the hypothesis H : µ = µ0 with µ0 known. Consider as test
statistic the quantity t(DN ) = |µ̂ − µ0| where µ̂ is the sample average estimator.
If H is true we know from Section 3.4 that µ̂ ∼ N (µ0, σ

2/N). Let us calculate the

6It is common habit in life-sceince research to consider a p-value smaller than 0.05 (0.01) a
(very) strong evidence against H
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value t(DN ) = |µ̂ − µ0| and fix a significance level α = 10%. This means that the
decision rule needs the definition of the value tα such that

Prob {t(DN ) > tα|H} = Prob {|µ̂− µ0| > tα|H} =

Prob {(µ̂− µ0 > tα) ∪ (µ̂− µ0 < −tα)|H} = 0.1

For a Normal variable z ∼ N (µ, σ2), we have that

Prob {|z− µ| > 1.645σ} = Prob

{
|z− µ|
σ

> 1.645

}
= 2 ∗ 0.05

It follows that being µ̂ ∼ N (µ0, σ
2/N)

Prob
{
|µ̂− µ0| > 1.645σ/

√
N
}

= 0.05 + 0.05 = 0.1

and consequently

tα = 1.645σ/
√
N (3.11.40)

The critical region is

S0 =
{
DN : |µ̂− µ0| > 1.645σ/

√
N
}

•

Example

Suppose that σ = 0.1 and that we want to test if µ = µ0 = 10 with a significance
level 10%. Let N = 6 and DN = {10, 11, 12, 13, 14, 15}. From the dataset we
compute

µ̂ =
10 + 11 + 12 + 13 + 14 + 15

6
= 12.5

and

t(DN ) = |µ̂− µ0| = 2.5

Since according to (3.11.40) tα = 1.645 ∗ 0.1/
√

6 = 0.0672, and t(DN ) > tα,
the observations DN are in the critical region. The conclusion is: the hypothesis
H : µ = 10 is rejected and the probability that we are making an error by rejecting
H is smaller than 0.1.

•

3.11.5 Hypothesis testing

So far we have dealt with single hypothesis tests. Let us now consider two mutually
exclusive hypothesis: H and H̄. Suppose we have a dataset {z1, . . . , zN} ∼ F drawn
from a distribution F . On the basis of this dataset, one hypothesis will be accepted
and the other one rejected. In this case, given the stochastic setting, two type of
errors are possible.

Type I error. This is the kind of error we make when we reject H but H is true.
For a given critical level tα the probability of making this error is

Prob {t(DN ) > tα|H} = α (3.11.41)
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Type II error. This is the kind of error we make when we accept H and H is
false. In order to define this error, we are forced to declare an alternative
hypothesis H̄ as a formal definition of what is meant by H being false. The
probability of type II error is

Prob
{
t(DN ) ≤ tα|H̄

}
(3.11.42)

that is the probability that the test leads to acceptance of H when in fact H̄
holds.

Note that

• when the alternative hypothesis is composite, there could be no unique Type
II error.

• although H and H̄ are complementary events, the quantity (3.11.42) cannot
be derived from (3.11.41) (see Equation (2.7.26)).

Example

In order to better illustrate these notions, let us consider the analogy with a murder
trial, where the suspect is Mr. Bean. The null hypothesis H is “Mr. Bean is
innocent”. The dataset is the amount of evidence collected by the police against
Mr. Bean. The Type I error is the error that we make if, Mr. Bean being innocent,
we send him to death-penalty. The Type II error is the error that we make if,
being Mr. Bean guilty, we acquit him. Note that the two hypotheses have different
philosophical status (asymmetry). H is a conservative hypothesis, not to be rejected
unless evidence against Mr Bean’s innocence is clear. This means that a type I error
is more serious than a type II error (benefit of the doubt).

•

Example

Let us consider a professor who has to decide, on the basis of empirical evidence,
whether a student copied or not during a class test. The null hypothesis H is that
the student is honest. The alternative hypothesis H̄ is that the student cheated.
Let the empirical evidence tN be represented by the number of lines of the classwork
that a student shares with at least one of his classmates.

The decision rule of the professor is the following: a student passes (i.e. the null
hypothesis that she is honest is accepted) if there is not enough empirical evidence
against her (e.g. if tN ≤ tα = 2), otherwise she fails (i.e. the alternative hypothesis
is chosen). Will the professor make any error? why? and does this depend on what?

•

3.11.6 The hypothesis testing procedure

In general terms a hypothesis testing procedure can be decomposed in the following
steps:

1. Declare the null and the alternative hypothesis

2. Choose the numeric value α of the type I error (e.g. the risk I want to run
when I reject the null hypothesis).

3. Define a test statistic.

4. Determine the critical value tα of the test statistic that leads to a rejection of
H according to the Type I error defined in Step 2.
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5. Among the set of tests of level α, choose the test that minimises the probability
of type II error.

6. Obtain the data and determine whether the observed value of the test statistic
leads to an acceptation or rejection of H.

Note that a number of tests, having a different type II error, can guarantee the
same type I error. An appropriate choice of test as a function of the type II error
is therefore required and will be discussed in the following section.

3.11.7 Choice of test

The choice of test and consequently the choice of the partition {S0, S1} is based on
two steps

1. Define a significance level α, that is the probability of type I error (or the
probability of incorrectly rejecting H)

Prob {reject H|H} = Prob {DN ∈ S0|H} = α

2. Among the set of tests {S0, S1} of level α, choose the test that minimises the
probability of type II error

Prob
{

accept H|H̄
}

= Prob
{
DN ∈ S1|H̄

}
that is the probability of incorrectly accepting H. This is equivalent to max-
imising the power of the test

Prob
{

reject H|H̄
}

= Prob
{
DN ∈ S0|H̄

}
= 1− Prob

{
DN ∈ S1|H̄

}
(3.11.43)

which is the probability of correctly rejecting H. Note that for a given signif-
icance level, the higher the power, the better !

Example

In order to reason about the Type II error, let us consider an r.v. z ∼ N (µ, σ2),
where σ is known and a set of N iid observations are given. We want to test the
null hypothesis µ = µ0 = 0, with α = 0.1 Consider three different tests and the
associated critical regions S0

1. |µ̂− µ0| > 1.645σ/
√
N

2. µ̂− µ0 > 1.282σ/
√
N (Figure 3.7)

3. |µ̂− µ0| < 0.126σ/
√
N (Figure 3.8)

Assume that the area blackened in Figure (3.7) equals the area blackened in
Figure (3.8). For all these tests Prob {DN ∈ S0|H} ≤ α, hence the significance
level (i.e. Type I error) is the same. However if H̄ : µ1 = 10 the type II error of
the three tests is significantly different. Which test is the best one, that is the one
which guarantees the lowest Type II error?

•
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Figure 3.7: On the left: distribution of the test statistic µ̂ if H : µ0 = 0 is true. On
the right: distribution of the test statistic µ̂ if H̄ : µ1 = 10 is true. The interval
marked by S1 denotes the set of observed µ̂ values for which H is accepted (non-
critical region). The interval marked by S0 denotes the set of observed µ̂ values for
which H is rejected (critical region). The area of the black pattern region on the
right equals Prob {DN ∈ S0|H}, i.e. the probability of rejecting H when H is true
(Type I error). The area of the grey shaded region on the left equals the probability
of accepting H when H is false (Type II error).

Figure 3.8: On the left: distribution of the test statistic µ̂ if H : µ0 = 0 is true.
On the right: distribution of the test statistic µ̂ if H̄ : µ1 = 10 is true. The two
intervals marked by S1 denote the set of observed µ̂ values for which H is accepted
(non-critical region). The interval marked by S0 denotes the set of observed µ̂
values for which H is rejected (critical region). The area of the pattern region
equals Prob {DN ∈ S0|H}, i.e. the probability of rejecting H when H is true (Type
I error). Which area corresponds to the probability of the Type II error?
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3.11.8 UMP level-α test

Given a significance level α we denote by uniformly most powerful (UMP) test, the
test

1. which satisfies

Prob {reject H|H} = Prob {DN ∈ S0|H} = α

2. for which

Prob
{

reject H|H̄
}

= Prob
{
DN ∈ S0|H̄

}
is maximed simultaneously for all θ ∈ ΘH̄ .

How is it possible to find UMP tests? In a simple case, an answer is given by
the Neyman-Pearson lemma.

3.11.9 Likelihood ratio test

Consider the simplest case Θ = {θ0, θ1}, where H : θ = θ0 and H̄ : θ = θ1 and
θ0, θ1 are two different values of the parameter of a r.v. z. Let us denote the two
likelihoods by L(θ0) and L(θ1), respectively.

The idea of Neyman and Pearson was to base the acceptance/rejection of H on
the relative values L(θ0) and L(θ1). In other terms we reject H if the likelihood
ratio

L(θ1)

L(θ0)

is sufficiently big.
We reject H only if the sample data DN are sufficiently more probable when

θ = θ1 than when θ = θ0.

Lemma 2 (Neyman-Pearson lemma). Let H : θ = θ0 and H̄ : θ = θ1. If a partition
{S0, S1} of the sample space D is defined by

S0 = {DN : L(θ1) > kL(θ0)} S1 = {DN : L(θ1) < kL(θ0)}

with
∫
S0
p(DN , θ0)dDN = α, then {S0, S1} is the most powerful level-α test of H

against H̄.

This lemma demonstrates that among all tests of level ≤ α, the likelihood ratio
test is the optimal procedure, i.e. it has the smallest probability of type II error.
Note, however, that the optimality relies on the knowledge of the parametric distri-
bution of z and then of its likelihood. Since this holds for all the parametric tests
described in the following section, they are optimal in the UMP sense.

3.12 Parametric tests

Suppose we want to test an assertion about a random variable with a known para-
metric distribution F (·, θ). Besides the distinction between simple and composite
tests presented in Section 3.11.1, there are two more ways of classifying hypothesis
tests:

One-sample vs. two-sample: one-sample tests concern an hypothesis about the
properties of a single r.v. z ∼ N (µ, σ2) while two-sample test concern the
relationship between two r.v. z1 ∼ N (µ1, σ

2
1) and z2 ∼ N (µ2, σ

2
2).
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Single-sided (one-tailed) vs. Two-sided (two-tailed): in single-sided tests the
region of rejection concerns only one tail of the distribution of the null hypoth-
esis. This means that H̄ indicates the predicted direction of the difference.
In two-sided tests the region of rejection concerns both tails of the null distri-
bution. This means that H̄ does not indicate the predicted direction of the
difference.

The most common parametric tests rely on hypothesis of normality. A non-
exhaustive list of conventional parametric test is available in the following table:

Name single/two sample known H H̄
z-test single σ2 µ = µ0 µ 6= µ0

z-test two σ2
1 = σ2

2 µ1 = µ2 µ1 6= µ2

t-test single µ = µ0 µ 6= µ0

t-test two µ1 = µ2 µ1 6= µ2

χ2-test single µ σ2 = σ2
0 σ2 6= σ2

0

χ2-test single σ2 = σ2
0 σ2 6= σ2

0

F-test two σ2
1 = σ2

2 σ2
1 6= σ2

2

The columns H and H̄ contain the parameter taken into consideration by the
test.

All the parametric test procedures can be decomposed into five main steps:

1. Define the null hypothesis and the alternative one.

2. Fix the probability α of having a Type I error.

3. Choose a test statistic t(DN ).

4. Define the critical value tα that satisfies the Type I error constraint.

5. Collect the dataset DN , compute t(DN ) and decide if the hypothesis is either
accepted or rejected.

Note that the first 4 steps are independent of the data and should be carried out
before the collection of the dataset. A more detailed description of some of these
tests is contained in the following sections and Appendix D.3.

3.12.1 z-test (single and one-sided)

Consider a random sample DN ← x ∼ N (µ, σ2) with µ unknown and σ2 known.
Let us see in detail how the five steps of the testing procedure are instantiated in
this case.

STEP 1:
Consider the null hypothesis and the alternative (composite and one-sided)

H : µ = µ0; H̄ : µ > µ0

STEP 2: fix the value α of the type I error.
STEP 3: If H is true then the distribution of µ̂ is N (µ0, σ

2/N). This means
that the test statistic t(DN ) is

tN = t(DN ) =
(µ̂− µ0)

√
N

σ
∼ N (0, 1)

STEP 4: determine the critical value tα.
We reject the hypothesisH if tN > tα = zα where zα is such that Prob {N (0, 1) > zα} =

α.



108CHAPTER 3. PARAMETRIC ESTIMATION: THE CLASSICAL APPROACH

Example: for α = 0.05 we would take zα = 1.645 since 5% of the standard
normal distribution lies to the right of 1.645. Note that the value zα for a given α
can be obtained by the R command qnorm(alpha,lower.tail=FALSE).

STEP 5: Once the dataset DN is measured, the value of the test statistic is

tN =
(µ̂− µ0)

√
N

σ

and the hypothesis is either accepted (tN ≤ zα) or rejected.

Example z-test

Consider a r.v. z ∼ N (µ, 1). We want to test H : µ = 5 against H̄ : µ > 5 with
significance level 0.05. Suppose that the dataset is DN = {5.1, 5.5, 4.9, 5.3}. Then
µ̂ = 5.2 and zN = (5.2 − 5) ∗ 2/1 = 0.4. Since this is less than 1.645, we do not
reject the null hypothesis.

•

3.12.2 t-test: single sample and two-sided

Consider a random sample from N (µ, σ2) with σ2 unknown. Let

H : µ = µ0; H̄ : µ 6= µ0

Let

t(DN ) = tN =

√
N(µ̂− µ0)√

1
N−1

∑N
i=1(zi − µ̂)2

=
(µ̂− µ0)√

σ̂2

N

(3.12.44)

a statistic computed using the data set DN where the denominator is the estimated
standard error (3.5.16).

If the hypothesis H holds, from Sections D.2.3 and 3.7 it follows that t(DN ) ∼
TN−1 is a r.v. with a Student distribution with N − 1 degrees of freedom. The size
α t-test consists in rejecting H if

|tN | > k = tα/2,N−1

where tα/2,N−1 is the upper α point of a T -distribution on N−1 degrees of freedom,
i.e.

Prob
{
tN−1 > tα/2,N−1

}
= α/2, Prob

{
|tN−1| > tα/2,N−1

}
= α.

where tN−1 ∼ TN−1. In other terms H is rejected when tN is too large.
Note that the value tα/2,N−1 for a given N and α can be obtained by the R

command qt(alpha/2,N-1,lower.tail=TRUE).

Example [61]

Suppose we want an answer to the following question: Does jogging lead to a re-
duction in pulse rate?. Let us engage eight non jogging volunteers in a one-month
jogging programme and let us take their pulses before and after the programme

pulse rate before 74 86 98 102 78 84 79 70
pulse rate after 70 85 90 110 71 80 69 74

decrease 4 1 8 -8 7 4 10 -4

Let us assume that the decreases are randomly sampled from N (µ, σ2) where
σ2 is unknown. We want to test H : µ = µ0 = 0 against H̄ : µ 6= 0 with a
significance α = 0.05. We have N = 8, µ̂ = 2.75, T = 1.263, tα/2,N−1 = 2.365 Since
|T | ≤ tα/2,N−1, the data is not sufficient to reject the hypothesis H. In other terms
the experiment does not provide enough evidence that jogging leads to reduction in
pulse rate.

•
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3.12.3 Statistical significance and effect size

Suppose we test the null hypothesis H : µ = 0 on the basis of a dataset DN and
that we obtain a large statistic (3.12.44) and consequently a very small p-value. We
will then reject the null hypothesis. Does this mean that the actual µ is necessarily
a large value? Conversely, would a large p-value imply that µ is small? In both
cases the answer is no. Hypothesis test and p-values do not reveal anything about
the real magnitude of the parameter µ, also known as the effect size. A large t-
statistic arises when the estimated effect (at the numerator) is large but also when
the estimated standard error (at the denominator) is small. At the same time,
a lack of statistical significance could be the consequence of a too high sampling
variance (e.g. because of small N).

Statistical significance is the probability that an observed sample mean is differ-
ent from zero because of chance. If the p-value is larger than the chosen α level (e.g,
0.05), the difference from zero is assumed to be explained by sampling variability.
With a sufficiently large sample, a statistical test will almost be significant, unless
there is no effect whatsoever (µ = 0). Now very small µ, even if significant, could
be meaningless. Also the p-value, by definition, provides no information about the
alternative hypothesis.

So what? It is more and more evident in the scientific community that only
reporting the p-value of hypothesis testing should not be considered sufficient or
adequate for understanding the results of an experiment. The typical recommen-
dation is then to augment the p-value with an estimation of the effect size or other
quantities [84]. In particular it is important to remind that the p-value (3.11.38)
of a study is a measure of the probability P (t(DN )|H) while the goal of an experi-
menter is typically to assess P (H|t(DN )) which in Bayesian terms is related to the
p-value by

P (H|t(DN )) =
P (t(DN )|H)P (H)

P (t(DN )|H)P (H) + P (t(DN )|H̄)(1− P (H))

where P (H) is the a priori probability of the null hypothesis and P (DN |H̄) is
the test power (3.11.43). It appears then that p-value provides only a limited
information about the data and that it is up to the scientist to judge how the p-
value together with other a priori or observed evidence support the conclusions of
the study or the decision making.

3.13 A posteriori assessment of a test

So far we assumed that the distribution of the test statistic is known under the null
hypothesis. In this case it is possible to fix a priori the Type I error. But what
about if we do not know anything about the distribution? Is it possible to assess a
posteriori the quality (in terms of errors of Type I or II) of a certain test (e.g. using
a certain threshold) ?

Let us consider the professor example (page 103) and the hypothesis test strat-
egy which leads to the refusal of a student when tN > tα = 2. In this case the
distributions of the tN statistic for an honest student (or a dishonest one) has no
known parametric form (Figure 3.9). Moreover, the professor has no information
about such distributions and, consequently, he has no way to measure or control
the Type I error rate (i.e. the grey area in Figure 3.9). Nevertheless, it is possible
to estimate a posteriori the Type I and Type II error rate if we have access to the
decisions of the professor and the real nature of student (honest or dishonest).

Suppose that N students took part in the exam and that NN did not copy while
NP did. According to the professor’s decision rule, N̂N were considered honest and



110CHAPTER 3. PARAMETRIC ESTIMATION: THE CLASSICAL APPROACH

Figure 3.9: On the left: distribution of the test statistic (number of identical lines)
if H is true, i.e. the student is honest. Typically honest students have very few
lines in common with others though it could happen by chance that such number
is more than 2. On the right: distribution of the test statistic (number of identical
lines) if H̄ is true, i.e. the student is dishonest. Typically dishonest students have
several lines in common with others though some of them are cunning enough to
conceal it.

Passed Failed
H: Honest student (-) TN FP NN = TN + FP
H̄: Guilty student (+) FN TP NP = FN + TP

N̂N = TN + FN N̂P = FP + TP N

Table 3.2: Reality vs. decision: given N students (NN honest and NN dishonest
ones) the table reports the breakdown of the N professor decisions (N̂N passes and
N̂P rejections).

passed the exam, while N̂P were considered dishonest and rejected. Because of
the overlapping of the distributions in Figure 3.9, it happens that FP > 0 honest
students (the ones in the grey area) failed and FN > 0 dishonest students (the ones
in the blue area) passed. Note that the honest students who failed indeed did not
copy but they had by chance more than one line in common with a classmate. At
the same time there are dishonest students who succeeded by copying but who were
clever enough to avoid more than 2 identical lines.

The resulting situation can be summarised in Table 3.2 and Table 3.3 where
we associated the null hypothesis H to the minus sign (non guilty or honest) and
the hypothesis H̄ to the plus sign. In Table 3.2, FP denotes the number of False
Positives, i.e. the number of times that the professor considered the student as guilty
(+) but in reality she was innocent (-). The ratio FP /N represents an estimate of
the type I error (probability of rejecting the null hypothesis when it is true) which is
denoted by α in Table 3.3. The term FN represents the number of False Negatives,
i.e. the number of times that the professor considered a student to be honest (-),
yet he copied (+). The ratio FN/N is an estimation of the type II error (probability
of accepting the null hypothesis when it is false) which is denoted by β in Table 3.3.

Note that the Type I and II errors are related. For instance, the professor could
decide he does not want to unfairly fail even a single student by setting tN to infinity.
In this case, all honest students, like the dishonest ones, would succeed: this means
we would have a null Type I error (α = 0) at the cost of the highest Type II error
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H accepted H rejected
H: null hypothesis (-) 1− α α

H̄: alternative hypothesis (+) β 1− β

Table 3.3: Reality vs. decision: the table reports the probability of correct and bad
decisions in a hypothesis test. In particular α denotes the type I error while 1− β
the test power.

(β ≈ NP /N).

3.14 Conclusion

The reader wishing to know more about machine learning could be disappointed.
She has been reading more than one hundred pages and has still the sensation
that she did not learn much about machine learning. All she read seems very far
from intelligent agents, neural networks and fancy applications... Nevertheless, she
already came across the most important notions of machine learning: conditional
probability, estimation and bias/variance trade-off. Is it all about that? From an
abstract perspective, yes. All the fancy algorithms that will be presented afterwards
(or that the reader is used to hear about) are nothing more (often without the
designer’s knowledge) estimators of conditional probability, and as such, submitted
to a bias/variance tradeoff. Such algorithms are accurate and useful only if they
manage well such trade-off.

But we can go a step further and see the bias/variance tradeoff not only as
a statistical concept but as a metaphor of human attitude towards models and
data, beliefs and experience, ideology and observations, preconceptions and events 7.
Humans define models (not only in science but also in politics, economics, religion)
to represent the regularity of nature. Now, reality often escapes or diverges from
such regularity. In front of the gap between the Eden of regularity and the natural
Hell of observations, humans waver between two extremes: i) negate or discredit
reality and reduce all divergences to some sort of noise (measurement error) or ii)
adapt, change their belief, to incorporate discording data and measures in their
model (or preconceptions).

The first attitude is exposed to bias (or dogmatism or worse conspiracy think-
ing): the second to variance (or instability). A biased human learner behaves as
an estimator which is insensitive to data: her strength derives from the intrinsic
robustness and coherence, and his weakness is due to the (in)sane attitude of dis-
regarding data and flagrant evidence. On the other side, a highly variant human
learner adapts rapidly and swiftly to data and observations, but he can be easily
criticised for his excessive instability, in simple words for going where the wind
blows.

When the evidence does not confirm your expectations (or what your parents,
teachers or media told you), what is the best attitude to take? Is there an optimal
attitude? Which side are you on?

3.15 Exercises

1. Derive analytically the bias of the sample average estimator in a non i.i.d. setting:
is the result different form the i.i.d. case?

7https://tinyurl.com/y25l4xyp

https://tinyurl.com/y25l4xyp
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2. Derive analytically the variance of the sample average estimator in an i.i.d. setting.

3. Consider a regression problem where

y = sin(x) + w

and x is uniformly distributed on the interval [0, 2π] and w = N (1, 1) is a Normal
variable with both mean and variance equal to 1. Let us consider a predictor h(x)
that is distributed like w. Compute the bias and variance of the predictor in the
following coordinates: x = 0, x = π, x = π/2.

Solution:

• x = 0 Bias=0, Var=1

• x = π Bias=0, Var= 1

• x = π/2 Bias=1, Var=1

4. Let us consider a dataset DN = {z1, . . . , z20} of 20 observations generated according
to an uniform distribution over the interval [−1, 1]. Suppose I want to estimate the
expected value of the distribution. Compute the bias and variance of the following
estimators:

• θ̂1 =
∑10
i=1 zi
10

• θ̂2 = µ̂ =
∑20
i=1 zi
20

• θ̂3 = −1

• θ̂4 = 1

• θ̂5 = z2

Suppose I want to estimate the variance of the distribution. Compute the bias of
the following estimators:

• σ̂2
1 =

∑
(zi−µ̂)2

19

• σ̂2
2 =

∑
(zi−µ̂)2

20

• σ̂2
3 = 1/3

Solution: Note that θ = 0 and σ2
z = 1/3

θ̂1 : B1 = 0, V1 = 0.03. Justification: E[θ̂1] = θ and Var
[
θ̂1

]
= σ2/10

θ̂2 : B2 = 0, V2 = 0.015. Justification: E[θ̂2] = θ and Var
[
θ̂2

]
= σ2/20

θ̂3 : B3 = −1, V3 = 0. Justification: E[θ̂3] = −1 and Var
[
θ̂3

]
= 0 since constant

θ̂4 : B4 = 1, V4 = 0. Justification: E[θ̂4] = 1 and Var
[
θ̂4

]
= 0 since constant

θ̂5 : B5 = 0, V5 = 0.33. Justification: E[θ̂5] = θ and Var
[
θ̂5

]
= σ2

σ̂2
1 : B = 0. Justification: sample variance is unbiased then E[σ̂2

1] = σ2
z

σ̂2
2 : B − 1/60 = −0.0166. Justification: Note first that σ̂2 = 19

20

∑
(zi−µ̂)2

19
. Then

E[σ̂2
2] =

19

20
E

[∑
(zi − µ̂)2

19

]
=

19

20
σ2
z

then

E[σ̂2
2]− σ2

z =
19

20
σ2
z − σ2

z = −σ2
z/20

σ̂2
3 : B = 0. Justification E[1/3] = 1/3 = σ2

z
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5. Let us consider the following observations of the random variable z

DN = {0.1,−1, 0.3, 1.4}

Write the analytical form of the likelihood function of the mean µ for a Gaussian
distribution with a variance σ2 = 1. The student should:

1. Trace the log-likelihood function on the graph paper

2. Determine graphically the maximum likelihood estimator.

3. Discuss the result.

Solution: Since N = 4 and σ = 1

L(µ) =

N∏
i=1

p(zi, µ) =

N∏
i=1

1√
2π

exp
−(zi − µ)2

2

−2 −1 0 1 2

−1
4

−1
2

−1
0

−8
−6

mu

lo
g−
lik
el
ih
oo
d

Note that µ̂ml coincides with the sample average µ̂ = 0.2 of DN .

6. Suppose you want to estimate the expectation µ of the uniform r.v. z ∼ U [−2, 3] by
using a dataset of size N = 10. By using R and its random generator to implement
a Monte Carlo method, first plot the sampling distribution (S = 1000 trials) then
estimate the bias and the variance of the following estimators:

1. θ̂ =
∑N
i=1

zi
N

2. θ̂ = minNi=1 zi

3. θ̂ = maxNi=1 zi

4. θ̂ = z1

5. θ̂ = zN

6. θ̂ =
∑
i=1 N

|zi|
N

7. θ̂ = medianizi

8. θ̂ = maxNi=1 wi where w ∼ N (0, 1).

9. θ̂ = 1

Rank the estimators in increasing order of the absolute value of the bias and the
variance.

7. The student should first create a dataset of N = 1000 observations according to the
dependency

y = g(β0 + β1x) + w

where x ∼ U [−1, 1], β0 = 1, β1 = −1, w ∼ N (µ = 0, σ2 = 0.1), g(x) = ex

1+ex
.

Then by using the same dataset she should:
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• estimate by maximum likelihood the parameters β0 and β1,

• plot the contour of the likelihood function, showing in the same graph the
values of the parameters and their estimations.

Hint: use a grid search to perform the maximisation.

8. The student should first create a dataset of N = 1000 observations according to the
dependence

Prob {y = 1|x} = g(β0 + β1x)

where x ∼ U [0, 1], β0 = 1, β1 = −1, g(x) = ex

1+ex
and y ∈ {0, 1}.

Then by using the same dataset she should:

• estimate by maximum likelihood the parameters β0 and β1,

• plot the contour of the likelihood function, showing in the same graph the
values of the parameters and their estimations.

Hint: use a grid search to perform the maximisation.

9. Let z ∼ N (1, 1), DN a training set of N i.i.d. observations zi and µ̂N the related
sample average estimator.

1. Compute analytically
Ez,DN [(z− µ̂N )2]

Hint: consider that z = θ + w where θ = E[z] and w ∼ N (0, 1).

2. Compute analytically
Ez,DN [(z− µ̂N )]

3. Validate by Monte Carlo simulation the two theoretical results above.

Solution: Since E[µ̂] = µ, Var [µ̂] = σ2
w/N and w is independent of DN :

Ez,DN [(z− µ̂N )2] = Ez,DN [(θ + w − µ̂N )2] =

= Ez,DN [w2 + 2w(θ − µ̂N ) + (θ − µ̂N )2] =

= Ez[w2] + EDN [(θ − µ̂N )2] = σ2
w + σ2

w/N = 1 + 1/N

R code to perform Monte Carlo validation :

rm(list=ls())

N=5

S=10000

sdw=1 ## noise variance

E=NULL

for (s in 1:S){

DN=rnorm(N,1,sdw)

muhat=mean(DN)

z=rnorm(1,1,sdw)

e=z-muhat

E=c(E,e^2)

}

cat("th=",sdw^2+sdw^2/N, "MC estimation=", mean(E),"\n")

10. Let us suppose that the only measurement of a Gaussian random variable z ∼
N (µ, 1) is in the form of an interval [−3.5, 1.5]. Estimate µ by maximum-likelihood
and show the likelihood-function L(µ). Hint: use the R function pnorm.

11. Let us suppose that 12 of the 31 days of August in Brussels are rainy. Estimate the
probability of a rainy day by maximum likelihood by using the Binomial distribution
(Section D.1.2).



Chapter 4

Nonparametric approaches
to estimation and testing

4.1 Nonparametric methods

In the previous chapter, we considered estimation problems where the probability
distribution is known, parameters’ value (e.g. mean and/or variance) aside. Such
estimation methods are called parametric. The meaningfulness of a parametric test
depends entirely on the validity of the assumptions made about the analytical form
of the distribution. However, in real configurations, it is not uncommon for the
experimenter to question parametric assumptions.

Consider a random sample DN ← z collected through some experimental obser-
vation and for which no hint about the underlying probability distribution Fz(·) is
available. Suppose we want to estimate a parameter of interest θ of the distribution
of z by using the plug-in estimate θ̂ = t(F̂ ) (Section 3.3). What can we say about

the accuracy of the estimator θ̂? As shown in Section 3.5.3, for some specific param-
eters (e.g. mean and variance) the accuracy can be estimated independently of the
parametric distribution. In most cases, however, the assessment of the estimator is
not possible unless we know the underlying distribution. What to do, hence, if the
distribution is not available? A solution is provided by the so-called nonparametric
or distribution-free methods that work independently on any specific assumption
about the probability distribution.

The adoption of these methods enjoyed considerable success in the last decades
thanks to the evolution and parallelisation of computational processing power. In
fact, most techniques for nonparametric estimation and testing are based on re-
sampling procedures, which require a large number of repeated (and almost similar)
computations on the data.

This chapter will deal with two resampling strategies for estimation and two
resampling strategies for hypothesis testing, respectively.

Jacknife: this approach to nonparametric estimation relies on repeated computa-
tions of the statistic of interest for all the combinations of the data where one
or more of the original examples are removed. It will be presented in Section
4.3.

Bootstrap: this approach to nonparametric estimation aims to estimate the sam-
pling distribution of an estimator by sampling (with replacement) from the
original data. It will be introduced in Section 4.4.

Randomisation: This is a resampling without replacement testing procedure. It

115
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consists in taking the original data and either scrambling the order or the
association of the original data. It will be discussed in Section 4.5.

Permutation: This is a resampling two-sample hypothesis-testing procedure based
on repeated permutations of the dataset. It will be presented in Section 4.6.

4.2 Estimation of arbitrary statistics

Consider a set DN of N data points sampled from a scalar r.v. z. Let E[z] = µ the
parameter to be estimated. In Section 3.3.1 we derived the bias and the variance
of the estimator µ̂:

µ̂ =
1

N

N∑
i=1

zi, Bias[µ̂] = 0, Var [µ̂] =
σ2

N

Now consider another quantity of interest, for example, the median or a mode of the
distribution. While it is easy to design a plug-in estimate of these quantities, their
accuracy is difficult to be computed. In other terms, given an arbitrary estimator

θ̂, the analytical form of the variance Var
[
θ̂
]

and the bias Bias[θ̂] is typically not

available.

Example

According to the plug-in principle (Section 3.3) we can design other estimators
besides sampled mean and variance, like:

• Estimation of skewness (2.11.40) of z: see Equation (E.0.2).

• Estimation of correlation (2.14.71) between x and y: : see Equation (E.0.3).

What about the accuracy (e.g. bias, variance) of such estimators?

•

Example

Let us consider an example of estimation taken from an experimental medical
study [61]. The goal of the study is to show bioequivalence between an old and
a new version of a patch designed to infuse a certain hormone in the blood. Eight
subjects take part in the study. Each subject has his hormone levels measured after
wearing three different patches: a placebo, an “old” patch and a “new” patch. It is
established by the Food and Drug Administration (FDA) that the new patch will
be approved for sale only if the new patch is bioequivalent to the old one according
to the following criterion:

θ =
|E(new)− E(old)|
E(old)− E(placebo)

≤ 0.2 (4.2.1)

Let us consider the following plug-in estimator (Section 3.3) of (4.2.1)

θ̂ =
|µ̂new − µ̂old|
µ̂old − µ̂placebo

Suppose we have collected the following data (details in [61])
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subj plac old new z=old-plac y=new-old

1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705

. . . . . . . . . . . . . . . . . .
8 18806 29044 26325 10238 -2719

mean: 6342 -452.3

The estimate is

θ̂ = t(F̂ ) =
|µ̂new − µ̂old|
µ̂old − µ̂placebo

=
|µ̂y|
µ̂z

=
452.3

6342
= 0.07

Can we say on the basis of this value that the new patch satisfies the FDA
criterion in (4.2.1)? What about the accuracy, bias or variance of the estimator?
The techniques introduced in the following sections may provide an answer to these
questions.

•

4.3 Jackknife

The jackknife (or leave-one-out) resampling technique aims at providing a compu-

tational procedure to estimate the variance and the bias of a generic estimator θ̂.
The technique was first proposed by Quenouille in 1949 and is based on removing
examples from the available dataset and recalculating the estimator. It is a general-
purpose tool that is easy to implement and able to solve a number of estimation
problems.

4.3.1 Jackknife estimation

In order to show the theoretical foundation of the jackknife, we first apply this
technique to the estimator µ̂ of the mean. Let DN = {z1, . . . , zN} be the available
dataset. Let us remove the ith example from DN and let us calculate the leave-
one-out (l-o-o) mean estimate from the N − 1 remaining examples

µ̂(i) =
1

N − 1

N∑
j 6=i

zj =
Nµ̂− zi
N − 1

Observe from above that the following relation holds

zi = Nµ̂− (N − 1)µ̂(i) (4.3.2)

that is, we can calculate the ith example zi, i = 1, . . . , N if we know both µ̂ and
µ̂(i). Suppose now we wish to estimate some parameter θ by using as an estimator
some complex statistic of the N data points

θ̂ = g(DN ) = g(z1, z2, . . . , zN )

The jackknife procedure consists in first computing

θ̂(i) = g(z1, z2, . . . , zi−1, zi+1, . . . , zN ), i = 1, . . . , N

which is called the ith jackknife replication of θ̂. Then by analogy with the rela-
tion (4.3.2) holding for the mean estimator, we define the i-th pseudo value by

η(i) = Nθ̂ − (N − 1)θ̂(i). (4.3.3)



118 CHAPTER 4. NONPARAMETRIC ESTIMATION AND TESTING

These pseudo values assume the same role as the zi in calculating the sample aver-
age (3.3.4). Hence the jackknife estimate of θ is given by

θ̂jk =
1

N

N∑
i=1

η(i) =
1

N

N∑
i=1

(
Nθ̂ − (N − 1)θ̂(i)

)
= Nθ̂ − (N − 1)θ̂(·) (4.3.4)

where

θ̂(·) =

∑N
i=1 θ̂(i)

N
.

The rationale of the jackknife technique is to use the quantity (4.3.4) in order to

estimate the bias of the estimator. Since, according to (3.5.8), θ = E[θ̂]− Bias[θ̂],

the jackknife approach consists in replacing θ by θ̂jk and E[θ̂] by θ̂, thus obtaining

θ̂jk = θ̂ − Biasjk[θ̂].

It follows that the jackknife estimate of the bias of θ̂ is

Biasjk[θ̂] = θ̂ − θ̂jk = θ̂ −Nθ̂ + (N − 1)θ̂(·) = (N − 1)(θ̂(·) − θ̂).

Note that in the particular case of a mean estimator (i.e. θ̂ = µ̂), we see that we
obtain, as expected, Biasjk[µ̂] = 0.

A jackknife estimate of the variance of θ̂ can be obtained from the sample
variance of the pseudo-values. We define the jackknife estimate of the variance of
θ̂ as

Varjk[θ̂] = Var
[
θ̂jk

]
(4.3.5)

Under the hypothesis of i.i.d. η(i)

Var
[
θ̂jk

]
= Var

[∑N
i=1 η(i)

N

]
=

Var
[
η(i)

]
N

From (4.3.3) we have ∑N
i=1 η(i)

N
= Nθ̂ − (N − 1)

N

N∑
i=1

θ̂(i)

Since

η(i) = Nθ̂ − (N − 1)θ̂(i) ⇔ η(i) −
∑N
i=1 η(i)

N
= −(N − 1)

(
θ̂(i) −

∑N
i=1 θ̂(i)

N

)
from (4.3.5) and (4.3.4) we obtain

Varjk[θ̂] =

∑N
i=1

(
η(i) − θ̂jk

)2

N(N − 1)
=

(
N − 1

N

N∑
i=1

(
θ̂(i) − θ̂(·)

)2
)

Note that in the case of the estimator of the mean (i.e. θ̂ = µ̂), since η(i) = zi

and θ̂jk = µ̂, we find again the result (3.5.11)

Varjk[θ̂] =

∑N
i=1(zi − µ̂)2

N(N − 1)
=
σ̂2

N
= Var [µ̂] (4.3.6)

The major motivation for jackknife estimates is that they reduce bias. Also,
it can be shown that under suitable conditions on the type of estimator θ̂, the

quantity (4.3.6) converges in probability to Var
[
θ̂
]
. However, the jackknife can fail

if the statistic θ̂ is not smooth (i.e. small changes in data cause small changes in
the statistic). An example of non-smooth statistic for which the jackknife works
badly is the median.
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4.4 Bootstrap

The method of bootstrap was proposed by Efron [58] as a computer-intensive tech-

nique to estimate the accuracy of a generic estimator θ̂. Bootstrap relies on a
data-based simulation method for statistical inference. The term bootstrap derives
from the phrase to pull oneself up by one’s bootstrap based on the fictional Adven-
tures of Baron Munchausen. The Baron had fallen to the bottom of a deep lake.
Just when it looked like all was lost, he thought to pick himself up by his own boot-
straps. In general terms, to pull yourself up by your bootstraps means to succeed
in something very difficult without any outside help1.

The idea of statistical bootstrap is very simple, namely that in the absence of
any other information, the sample itself offers the best guide of the sampling dis-
tribution. The method is completely automatic, requires no theoretical calculation,
and is available no matter how mathematically complicated the estimator (3.4.6)
is. By resampling with replacement from DN we can build a set of B datasets
D(b), b = 1, . . . , B. From the empirical distribution of the statistics g(D(b)) we can
construct confidence intervals and tests for significance.

4.4.1 Bootstrap sampling

Consider a data set DN . A bootstrap data set D(b), b = 1, . . . , B is created by
randomly selecting N points from the original set DN with replacement (Figure
4.1).

Since DN itself contains N points, there is nearly always a duplication of indi-
vidual points in a bootstrap data set. Each point has an equal probability 1/N of
being chosen on each draw. Hence, the probability that a point is chosen exactly k
times is given by the binomial distribution (Section D.1.2)

Prob {k} =
N !

k!(N − k)!

(
1

N

)k (
N − 1

N

)N−k
0 ≤ k ≤ N

Given a set of N distinct values, there is a total of
(

2N−1
N

)
distinct bootstrap

datasets. The number is quite large already for N > 10. For example, if N = 3
and DN = {a, b, c}, we have 10 different bootstrap sets: {a,b,c}, {a,a,b}, {a,a,c},
{b,b,a}, {b,b,c}, {c,c,a}, {c,c,b}, {a,a,a}, {b,b,b}, {c,c,c}.

Under balanced bootstrap sampling, the B bootstrap sets are generated in such a
way that each original data point is present exactly B times in the entire collection
of bootstrap samples.

4.4.2 Bootstrap estimate of the variance

Given the estimator (3.4.6), for each bootstrap dataset D(b), b = 1, . . . , B, we can
define a bootstrap replication

θ̂(b) = g(D(b)) b = 1, . . . , B

that is the value of the statistic for the specific bootstrap sample. The bootstrap
approach computes the variance of the estimator θ̂ through the variance of the set
θ̂(b), b = 1, . . . , B, given by

Varbs[θ̂] =

∑B
b=1(θ̂(b) − θ̂(·))

2

(B − 1)
where θ̂(·) =

∑B
b=1 θ̂(b)

B
(4.4.7)

1This term has not the same meaning (though the derivation is similar) as the one used in
computer operating systems where bootstrap stands for starting a computer from an hardwired
set of core instructions
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Figure 4.1: Bootstrap replications of a dataset and bootstrap statistic computation



4.4. BOOTSTRAP 121

It can be shown that if θ̂ = µ̂, then for B → ∞, the bootstrap estimate Varbs[θ̂]
converges to the variance Var [µ̂].

4.4.3 Bootstrap estimate of bias

Let θ̂ be a plug-in estimator (Equation (3.3.3)) based on the sample DN and

θ̂(·) =

∑B
b=1 θ̂(b)

B
(4.4.8)

Since Bias[θ̂] = E[θ̂] − θ, the bootstrap estimate of the bias of the plug-in esti-

mator θ̂ is obtained by replacing E[θ̂] with θ̂(·) and θ with θ̂:

Biasbs[θ̂] = θ̂(·) − θ̂ (4.4.9)

Then, since
θ = E[θ̂]− Bias[θ̂]

the bootstrap bias corrected estimate is

θ̂bs = θ̂ − Biasbs[θ̂] = θ̂ − (θ̂(·) − θ̂) = 2θ̂ − θ̂(·) (4.4.10)

Note that if we want to estimate the bias of a generic non plug-in estimator
g(DN ), the θ̂ term in the right-hand terms of (4.4.9) should anyway refer to the
plug-in estimator t(F̂ ) (Equation (3.3.3)).

R script

Run the R file NonParametric/patch.R for the estimation of bias and variance in
the case of the patch data example.

•

4.4.4 Bootstrap confidence interval

Standard bootstrap confidence limits are based on the assumption that the estima-
tor θ̂ is normally distributed with mean θ and variance σ2. Taking the bootstrap
estimate of variance, an approximate 100(1− α)% confidence interval is given by

θ̂ ± zα/2
√

Varbs[θ̂] = θ̂ ± zα/2

√∑B
b=1(θ̂(b) − θ̂(·))2

(B − 1)
(4.4.11)

An improved interval is given by using the bootstrap correction for bias

2θ̂ − θ̂(·) ± zα/2

√∑B
b=1(θ̂(b) − θ̂(·))2

(B − 1)
(4.4.12)

Another bootstrap approach for constructing a 100(1−α)% confidence interval is
to use the upper and lower α/2 values of the bootstrap distribution. This approach

is referred to as bootstrap percentile confidence interval. If θ̂L,α/2 denotes the value
such that only a fraction α/2 of all bootstrap estimates are inferior to it, and

likewise θ̂H,α/2 is the value exceeded by only α/2 of all bootstrap estimates, then
the confidence interval is given by

[θ̂L,α/2, θ̂H,α/2] (4.4.13)

where the two extremes are also called the Efron’s percentile confidence limits.
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4.4.5 The bootstrap principle

Given an unknown parameter θ of a distribution Fz and an estimator θ̂, the goal of
any estimation procedure is to derive or approximate the distribution of θ̂− θ. For
example, the calculation of the variance of θ̂ requires the knowledge of Fz and the
computation of EDN

[(θ̂ − E[θ̂])2]. Now, in practical contexts, Fz is unknown, and

the calculus of EDN
[(θ̂−E[θ̂])2] is not possible in an analytical way. The rationale

of the bootstrap approach is (i) to replace Fz by the empirical counterpart (3.2.2)

and (ii) to compute EDN
[(θ̂ −E[θ̂])2] by a Monte Carlo simulation approach (Sec-

tion 2.18) where several samples of size N are generated by resampling DN .
The outcome of a bootstrap technique is a Monte Carlo approximation of the

distribution θ̂(b) − θ̂. In other terms the variability of θ̂(b) (based on the empirical

distribution) around θ̂ is expected to be similar (or mimic) the variability of θ̂
(based on the true distribution) around θ.

The bootstrap principle relies on the two following properties (i) as N gets
larger and larger, the empirical distribution F̂z(·) converges (almost surely) to Fz(·)
(Glivenko-Cantelli theorem (D.10.18)) and (ii) as B gets larger, the quantity (4.4.7)

converges (in probability) to the variance of the estimator θ̂ based on the empirical
distribution (as stated in (D.9.15)). In other terms

Varbs[θ̂]
B→∞→ E

D̂N
[(θ̂ − E[θ̂])2]

N→∞→ EDN
[(θ̂ − E[θ̂])2] (4.4.14)

where E
D̂N

[(θ̂ − E[θ̂])2] stands for the plug-in estimate of the variance of θ̂ based
on the empirical distribution.

In practice, for a small finite N , bootstrap estimation inevitably returns some
error. This error is a combination of a statistical error and a simulation error.
The statistical error component is due to the difference between the underlying
distribution Fz(·) and the empirical distribution F̂z(·). The magnitude of this error

depends on the choice of the estimator θ̂(DN ) and decreases by increasing the
number N of observations.

The simulation error component is due to the use of empirical (Monte Carlo)

properties of θ̂(DN ) rather than exact properties. Simulation error decreases by
increasing the number B of bootstrap replications.

Unlike the jackknife method, in the bootstrap, the number of replicates B can
be adjusted to the computer resources. In practice, two rules of thumb are typically
used:

1. Even a small number of bootstrap replications, e.g. B = 25, is usually infor-

mative. B = 50 is often enough to make a good estimate of Var
[
θ̂
]
.

2. Very seldom are more thanB = 200 replications needed for estimating Var
[
θ̂
]
.

Much bigger values of B are required for bootstrap confidence intervals.

Note that the use of rough statistics θ̂ (e.g. unsmooth or unstable) can make the
resampling approach behave wildly. Examples of nonsmooth statistics are sample
quantiles and the median.

In general terms, for i.i.d. observations, the following conditions are required
for the convergence of the bootstrap estimate

1. the convergence of F̂ to F (satisfied by the Glivenko-Cantelli theorem) for
N →∞;

2. an estimator such that the estimate θ̂ is the corresponding functional of the
empirical distribution.

θ = t(F )→ θ̂ = t(F̂ )
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This is satisfied for sample means, standard deviations, variances, medians
and other sample quantiles.

3. a smoothness condition on the functional. This is not true for extreme order
statistics such as the minimum and the maximum values.

But what happens when the dataset DN is not i.i.d. sampled from a distribution
F? In such non/conventional configurations, the most basic version of bootstrap
might fail. Examples are incomplete data (survival data, missing data), dependent
data (e.g. variance of a correlated time series) and dirty data (outliers) configura-
tions. In these cases, specific adaptations of the bootstrap procedure are required.
For reason of space, we will not discuss them here. However, for a more exhaustive
discussion on the limits of bootstrap, we invite the reader to refer to [111].

4.5 Randomisation tests

Randomisation tests were introduced by R.A. Fisher in 1935. The goal of a ran-
domisation test is to help to discover some regularity (e.g. a non/random property
or pattern) in a complicated data set. A classic example is to take a pack of poker
play cards and check whether they were well shuffled by our poker opponent. Ac-
cording to the hypothesis testing terminology, randomisation tests make the null
hypothesis of randomness and test this hypothesis against data. In order to test
the randomness hypothesis, several random transformations of data are generated.

Suppose we are interested in some property which is related to the order of data.
Let the original data set DN = {x1, . . . , xN} and t(DN ) some statistic which is a
function of the order in the data DN . We want to test if the value of t(DN ) is due
only to randomness.

• An empirical distribution is generated by scrambling (or shuffling) R times
the N elements at random. For example, the jth, j = 1, . . . , R scrambled

data set could be D
(j)
N = {x23, x4, x343, . . . }

• For each of the jth scrambled sets we compute a statistic t(i). The resulting
distribution is called the resampling distribution.

• Suppose that the value of t(DN ) is only exceeded by k of the R values of the
resampling distribution.

• The probability of observing t(DN ) under the null hypothesis (i.e. random-
ness) is only pt = k/R. The null hypothesis can be accepted/rejected on the
basis of pt.

The quantity pt plays the role of nonparametric p-value (Section 3.11.3) and it can
be used, like its parametric counterpart, both to assess the evidence of the null
hypothesis and to perform a decision test (e.g. refuse to play if we think cards were
not sufficiently shuffled).

A bioinformatics example

Suppose we have a DNA sequence and we think that the number of repeated se-
quences (e.g. AGTAGTAGT) in the sample is greater than expected by chance.
Let t = 17 be the number of repetitions. How to test this hypothesis? Let us
formulate the null hypothesis that the base order is random. We can construct
an empirical distribution under the null hypothesis by taking the original sample
and randomly scrambling the bases R = 1000 times. This creates a sample with
the same base frequencies as the original sample but where the order of bases is
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assigned at random. Suppose that only 5 of the 1000 randomised samples has a
number of repetitions higher or equal than 17. The p-value (i.e. the probability of
seeing t = 17 under the null hypothesis) which is returned by the randomisation
test amounts to 0.005. You can run the randomisation test by using the R script
file NonParametric/randomiz.R.

•

4.5.1 Randomisation and bootstrap

Both bootstrap and randomisation rely on resampling. But what are their peculiar-
ities? A randomised sample is generated by scrambling the existing data (sampling
without replacement) while a bootstrap sample is generated by sampling with re-
placement from the original sample. Also, randomisation tests are appropriate when
the order or association between parts of data are assumed to convey important in-
formation. They test the null hypothesis that the order or the association is random.
On the other side, bootstrap sampling aims to characterise the statistical distribu-
tion of some statistics t(DN ) where the order makes no difference in the statistics

(e.g. mean). Randomisation would be useless in that case since t(D
(1)
N ) = t(D

(2)
N )

if D
(1)
N and D

(2)
N are obtained by resampling DN without replacement.

4.6 Permutation test

Permutation test is used to perform a nonparametric two-sample test. Consider a
random sample {z1, . . . , zM} drawn from an unknown distribution z ∼ Fz(·) and a
random sample {y1, . . . , yN} from an unknown distribution y ∼ Fy(·). For example,
in a bioinformatics task the two datasets could be expression measures of a gene
under M normal and N pathological conditions. Let the null hypothesis be that the
two distributions are the same regardless of the analytical forms of the distributions.

Consider a (order-independent) test statistic for the observed data and call
it t(DN , DM ). The rationale of the permutation test is to locate the statistic
t(DN , DM ) with respect to the distribution which could be obtained if the null
hypothesis were true. In order to build the null hypothesis distribution, all the
possible R =

(
M+N
M

)
partitionings of the N + M observations in two subsets of

size N and M are considered. If the null hypothesis were true, all the partitionings
would be equally likely. Then for each i-th permutation (i = 1, . . . , R) the permuta-
tion test computes the t(i) statistic. Eventually, the value t(DN , DM ) is compared
with the set of values t(i). If the value t(DN , DM ) falls in the α/2 tails of the t(i)

distribution, the null hypothesis is rejected with type I error α.
The permutation procedure will involve substantial computation unless M and

N are small. When the number of permutations is too large a random sample of a
large number R of permutations can be taken.

Note that when observations are drawn according to a normal distribution, it
can be shown that the use of a permutation test gives results close to those obtained
using the t test.

Example

Let us consider D4 = [74, 86, 98, 102, 89] and D3 = [10, 25, 80]. We run a permu-
tation test (R =

(
8
4

)
= 70 permutations) to test the hypothesis that the two sets

belong to the same distribution (R script NonParametric/s perm.R).
Let t(DN ) = µ̂(D4) − µ̂(D3) = 51.46. Figure 4.2 shows the position of t(DN )

with respect to the null sampling distribution.

•



4.7. CONSIDERATIONS ON NONPARAMETRIC TESTS 125

Figure 4.2: Null distribution returned by the permutation test and position (vertical
red line) of the observed statistic

4.7 Considerations on nonparametric tests

Nonparametric tests are a worthy alternative to parametric approaches when no
assumptions about the probability distribution may be made (e.g. in bioinformat-
ics). It is risky, however, to consider them as a panacea, and a critical attitude
towards them has to be preferred. In short terms, here you find some of the ma-
jor advantages and disadvantages concerning the use of a nonparametric approach.
Advantages:

• If the sample size is very small, there may be no alternative to using a nonpara-
metric test unless the nature of the population distribution is known exactly.

• Nonparametric tests make fewer assumptions about the data.

• Nonparametric tests are available to analyse data that are inherently in ranks
(e.g. taste of food), classificatory or categorical.

• Nonparametric tests are typically more intuitive and easier to implement.

Disadvantages:

• They involve high computational costs.

• The large availability of statistical software makes possible the potential mis-
use of statistical measures.

• A nonparametric test is less powerful than a parametric one when the as-
sumptions of the parametric test are met.

• Assumptions are associated with most nonparametric statistical tests, namely,
that the observations are independent.
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4.8 Exercises

1. Suppose you want to estimate the skewness γ of the uniform r.v. z ∼ U [−2, 3] by
using a dataset of size N = 10. By using R and its random generator, first plot
the sampling distribution then estimate the bias and the variance of the following
estimators:

1. γ̂ =
1
N

∑
i
(zi−µ̂)3

σ̂3

2. γ̂ =
1
N

∑
i
|zi−µ̂|3

σ̂3

3. γ̂ = 1

Before each random generation set the seed to zero. Hint: the skewness of a uniform
continuous variable is equal to 0.

2. Suppose you want to estimate the skewness γ of the uniform r.v. z ∼ U [−2, 3] by
using a dataset of size N = 10. By using R and its random generator, first generate
a dataset DN with N = 10. By using the jacknife, plot the sampling distribution,
then estimate the bias and the variance of the following estimators,

1. γ̂ =
1
N

∑
i
(zi−µ̂)3

σ̂3

2. γ̂ =
1
N

∑
i
|zi−µ̂|3

σ̂3

3. γ̂ = 1

Compare the results with the ones of the exercise before. Before each random
generation set the seed to zero.

3. Suppose you want to estimate the skewness γ of the uniform r.v. z ∼ U [−2, 3] by
using a dataset of size N = 10. By using R and its random generator, first generate
a dataset DN with N = 10. By using the bootstrap method, plot the sampling
distribution, then estimate the bias and the variance of the following estimators,

1. γ̂ =
1
N

∑
i
(zi−µ̂)3

σ̂3

2. γ̂ =
1
N

∑
i |zi−µ̂|

3

σ̂3

3. γ̂ = 1

Compare the results with the ones of the two exercises before. Before each random
generation set the seed to zero.

4. Let us consider a r.v. z such that E[z] = µ and Var[z] = σ2. Suppose we want to
estimate from i.i.d. dataset DN the parameter θ = µ2 = (E[z])2. Let us consider
three estimators:

θ̂1 =

(∑N
i=1 zi

N

)2

θ̂2 =

∑N
i=1 z

2
i

N

θ̂3 =
(
∑N
i=1 zi)

2

N

• Are they unbiased?

• Compute analytically the bias of the three estimators. Hint: use (2.11.34).

• By using R, verify the result above by Monte Carlo simulation using different
values of N .

• By using R, estimate the bias of the three estimators by bootstrap.

Solution: See the file Exercise1.pdf in the directory gbcode/exercises of the
companion R package (Appendix G).



Chapter 5

A statistical framework of
supervised learning

5.1 Introduction

A supervised learning problem can be described in statistical terms by the following
elements:

1. A vector of n random input variables x ∈ X ⊂ Rn , whose values are
i.i.distributed according to an unknown probabilistic distribution Fx(·).

2. A target operator which transforms the input values into outputs y ∈ Y
according to an unknown conditional probability distribution Fy(y|x = x).

3. A collection DN of N input/output data points 〈xi, yi〉, i = 1, . . . , N , called
the training set and drawn according to the joint input/output density Fx,y(x, y).

4. A learning machine or learning algorithm which, on the basis of the training
set DN , returns an estimation (or prediction) of the target for an input x. The
input/output function estimated by the learning machine is called hypothesis
or model.

Note that in this definition we encounter most of the notions presented in the
previous chapters: probability distribution, conditional distribution, estimation.

Examples

Several practical problems can be seen as instances of a supervised learning problem:

• Predict whether a patient, hospitalised due to a heart attack, will have a sec-
ond heart attack, on the basis of demographic, diet and clinical measurements.

• Predict the price of a stock in 6 months from now, on the basis of company
performance measures and economic data.

• Identify the risk factors for breast cancer, based on clinical, demographic and
genetic variables.

• Classify the category of a text email (spam or not) on the basis of its text
content.

• Characterise the mechanical property of a steel plate on the basis of its phys-
ical and chemical composition.

127
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Figure 5.1: The supervised learning setting. The target operator returns an output
for each input according to a fixed but unknown probabilistic law. The hypothesis
predicts the value of the target output when entered with the same input.

In the case of the spam categorisation problem, the input vector may be a vector of
size n where n is the number of the most used English words and the ith component
of x represents the frequency of the ith word in the email text. The output y is
a binary class which takes two values: {SPAM,NO.SPAM}. The training set is a
set of emails previously labelled by the user as SPAM and NO.SPAM. The goal of
the learning machine is to create a classification function which, once a vector x of
word frequencies is presented, should be able to classify correctly the nature of the
email.

•

A learning machine is nothing more than a particular instance of an estima-
tor (3.4.7) whose goal is to estimate the parameters of the joint distribution Fx,y(y, x)
(or sometimes of the conditional distribution Fy(y|x = x)) on the basis of a training
set DN , i.e. a set of i.i.d. realisations of the pair x and y. The goal of a learn-
ing machine is to return a hypothesis with low prediction error, i.e. a hypothesis
which computes an accurate estimate of the output of the target when the same
test value is an input to the target and the predictor (Fig. 5.1). The prediction
error is also usually called generalisation error, since it measures the capacity of
the learned hypothesis to generalise to previously unseen test samples. A learning
algorithm generalises well if it returns an accurate prediction for i.i.d. test data, i.e.
input/output pairs which are independent from the training set yet are generated by
the same joint distribution Fx,y(x, y). We insist on the importance of the two ”i”
in the i.i.d. assumption: test data are supposed i) to be generated by the same
distribution underlying the training set but ii) to be independent from the training
set.

We will only consider hypotheses in the form h(·, α) where α ∈ Λ∗ is a vector of
model parameters1 or weights. Therefore, henceforth, we will denote a hypothesis
h(·, α) by the corresponding vector α ∈ Λ∗. As we will see later, examples of
hypotheses are linear models h(x, α) = xTα (Section 7.1) where α represents the
coefficients of the model, or feed-forward neural networks (Section 8.1.1) where α
is the set of values taken by the weights of the neural architecture.

1It is important to remark that by model parameter we refer here to a tunable/trainable weight
of the hypothesis function and not to the target of the estimation procedure as in Section 3.1.1



5.2. ESTIMATING DEPENDENCIES 129

Let αN be the hypothesis returned by the learning machine on the basis of
the training set, and define GN its generalisation error. The goal of the learning
machine is then to seek the hypothesis αN which minimises the value GN .

In these terms, the learning problem could appear as a simple problem of opti-
misation which consists of searching the hypothesis α which yields the lowest gen-
eralisation error. Unfortunately, the reality is not that simple, since the learning
machine cannot measure directly GN but only return an estimate of this quantity,
denoted by ĜN . Moreover, what makes the problem still more complex is that the
same finite training set is employed both to select αN and to estimate GN , thus
inducing a strong correlation between these two quantities.

The common supervised learning practice to minimise the quantity GN consists
in

1. decomposing the set of hypothesis Λ∗ into a nested sequence of hypothesis
classes (or model structures) Λ1 ⊂ Λ2 ⊂ · · · ⊂ ΛS of increasing capacity (or
expressiveness) s with Λ∗ = ∪Ss=1Λs

2. implementing a search procedure at two nested levels [113] (Fig. 5.2). The
inner level, also known as parametric identification, considers a single class of
hypotheses Λs and uses a method or algorithm to select a hypothesis h(·, αsN )
from this class. The algorithm typically implements a procedure of multivari-
ate optimisation in the space of model parameters of the class Λs, which can
be solved by (conventional) optimisation techniques. Examples of paramet-
ric identification procedures which will be presented in subsequent chapters
are linear least-squares for linear models or back-propagated gradient-descent
for feedforward neural networks [144]. The outer level, also called structural
identification, ranges over nested classes of hypotheses Λs, (s = 1, . . . , S), and
executes for each of them the parametric routine returning the vector αsN . The
outcome of the parametric identification is used to assess the class Λs through
a validation procedure which returns the estimate ĜsN on the basis of the fi-
nite training set. It is common to use nonparametric techniques to assess the
quality of a predictor like the bootstrap (Section 4.4) or cross-validation [152]
based on the jackknife strategy (Section 4.3).

3. selecting the best hypothesis in the set {αsN}, with s = 1, . . . , S, according

to the assessments
{
ĜsN

}
produced by the validation step. This final step,

which returns the model to be used for prediction, is usually referred to as the
model selection procedure. Instances of model selection include the problem
of choosing the degree of a polynomial model or the problem of determining
the best number of hidden nodes in a neural network [25].

The outline of the chapter is as follows. Section 5.2 introduces the supervised
learning problem in statistical terms. We will show that classification (Section
5.3) and regression (Section 5.4) can be easily cast in this framework. Section 5.5
introduces the statistical assessment of a learning machine . Section 5.6 discusses
the notion of generalisation error and its bias/variance decomposition. Section 5.8
introduces the supervised learning procedure and its decomposition in structural
and parametric identification. Model validation and in particular cross validation,
a technique for estimating the generalisation error on the basis of a finite number
of data, are introduced in Section 5.9.

5.2 Estimating dependencies

This section details the main actors of the supervised learning problem:
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Figure 5.2: The learning problem and its decomposition in parametric and struc-
tural identification. The larger is the class of hypothesis Λs, the large is its expressive
power in terms of functional relationships.

• A data generator of random input vectors x ∈ X ⊂ Rn independently and
identically distributed (i.i.d) according to some unknown (but fixed) probabil-
ity distribution Fx(x). The variable x is called the independent variable. It is
helpful to distinguish between cases in which the experimenter has a complete
control over the values of x and those cases in which she does not. When the
nature of inputs is completely random, we consider x as a realisation of the
random variable x having probability law Fx(·). When the experimenter’s
control is complete, we can regard Fx(·) as describing the relative frequencies
with which different values for x are set.

• A target operator, which transforms the input x into the output value y ∈ Y
according to some unknown (but fixed) conditional distribution

Fy(y|x = x) (5.2.1)

(this includes the simplest case where the target implements some determin-
istic function y = f(x)). The conditional distribution (5.2.1) formalises the
stochastic dependency between inputs and output.

• A training set DN = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xN , yN 〉} made of N pairs (or
training examples) 〈xi, yi〉 ∈ Z = X × Y independent and identically dis-
tributed (i.i.d) according to the joint distribution

Fz(z) = Fx,y(〈x, y〉) (5.2.2)

Note that, as in Section 3.4, the observed training set DN ∈ ZN = (X ×Y)N

is considered here as the realisation of a random variable DN .

• A learning machine having three components:

1. A class of hypothesis functions h(·, α) with α ∈ Λ. We consider only the
case where the functions h(·, α) ∈ Y are single/valued mappings.

2. A loss function L(·, ·) associated with a particular y and a particular h(x),
whose value L(y, h(x)) measures the discrepancy between the output y
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and the prediction h(x). For a given hypothesis h(·, α), the functional
risk is the loss average over the XY-domain

R(α) = Exy[L] =∫
X ,Y

L(y, h(x, α))dFx,y(x, y) =

∫
X ,Y

L(y, h(x, α))p(x, y)dxdy (5.2.3)

Note that L is random since x and y are random test points (i.i.drawn
from the same distribution (5.2.2) of the training set) while the hypoth-
esis h(·, α) is given. This is the expected loss if we test the hypothesis
h(·, α) over an infinite amount of i.i.d. input/output pairs generated
by (5.2.2). For the class Λ of hypothesis we define

α0 = arg min
α∈Λ

R(α) (5.2.4)

as the hypothesis in the class Λ which has the lowest functional risk.
Here, we assume for simplicity that there exists a minimum value of
R(α) achievable by a function in the class Λ. We define with R(α0) the
functional risk of the class Λ of hypotheses.

3. If instead of a single class of hypothesis we consider the set Λ∗ containing
all possible single/valued mappings h : X → Y, we may define the
quantity

α∗ = arg min
α∈Λ∗

R(α) (5.2.5)

and
R∗ = R(α∗) (5.2.6)

as the absolute minimum rate of functional risk. Note that this quan-
tity is ideal since it requires the complete knowledge of the distribution
underlying the data. In a classification setting, the optimal model with
parameters α∗ is called the Bayes classifier and R(α∗) the Bayes error
(Section 5.3.1). In a regression setting (Section 5.4) where y = f(x) + w
and the loss function is quadratic, h(·, α∗) = f(·) and R(α∗) amounts to
the variance of w.

4. An algorithm L of parametric identification which takes as input the
training set DN and returns as output one hypothesis function h(·, αN )
with αN ∈ Λ. Here, we will consider only the case of deterministic and
symmetric algorithms. This means respectively that they always give
the same h(·, αN ) for the same data set DN and that they are insensitive
to the ordering of the examples in DN .

The parametric identification of the hypothesis is done according to ERM
(Empirical Risk Minimisation) inductive principle [162] where

αN = α(DN ) = arg min
α∈Λ

Remp(α) (5.2.7)

minimise the empirical risk (also known as training error or apparent
error)

Remp(α) =
1

N

N∑
i=1

L(yi, h(xi, α)) (5.2.8)

constructed on the basis of the data set DN .

This formulation of a supervised learning problem is quite general, given that it
includes two basic statistical problems:
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1. the problem of classification (also known as pattern recognition),

2. the problem of regression estimation.

These two problems and their link with supervised learning will be discussed in the
following sections.

5.3 Dependency and classification

Classification is one of the most common problems in statistics. It consists in ex-
ploring the association between categorical dependent variables and independent
variables which can take either continuous or discrete values. The problem of clas-
sification is formulated as follows: consider an input/output stochastic dependence
which can be described by a joint distribution Fx,y(·), such that once an input
vector x is given, y ∈ Y = {c1, . . . , cK} takes a value among K different classes. In
the example of spam email classification, K = 2 and c1 =SPAM, c2 =NO.SPAM.
We assume that the dependence is described by a conditional discrete probability
distribution Prob {y = ck|x = x} that satisfies

K∑
k=1

Prob {y = ck|x} = 1

This means that observations are noisy and follow a probability distribution. In
other terms, given an input x, y does not always take the same value. Pretending
to have a zero-error classification in this setting is then completely unrealistic.

Example

Consider a stochastic dependence where x represents a year’s month and y is a
categorical variable representing the weather situation in Brussels. Suppose that y
may take only the two values {RAIN,NO.RAIN}. The setting is stochastic since
you might have rainy August and some rare sunny December days. Suppose that
the conditional probability distribution of y is represented in Figure 5.3. This figure
plots Prob {y = RAIN|x = month} and Prob {y = NO.RAIN|x = month} for each
month. Note that for each month the probability constraint is respected:

Prob {y = RAIN|x = month}+ Prob {y = NO.RAIN|x = month} = 1

•

A classifier is a particular instance of estimator which for a given x is expected
to return an estimate ŷ = ĉ = h(x, α) which takes a value in {c1, . . . , cK}. Once a
cost function is defined, the problem of classification can be expressed in terms of
the formalism introduced in the previous section. An example of cost function is
the indicator function (taking only two values: zero and one)

L(c, ĉ) =

{
0 if c = ĉ

1 if c 6= ĉ
(5.3.9)

also called the 0/1 loss. However, we can imagine situations where some misclassi-
fications are worse than others. In this case, it is better to introduce a loss matrix
L(K×K) where the element L(jk) = L(cj ,ck) denotes the cost of the misclassification
when the predicted class is ĉ(x) = cj and the correct class is ck. This matrix must
be null on the diagonal and nonnegative everywhere else. In practical cases the
definition of a loss matrix could be quite challenging since it should take into ac-
count and combine several criteria, some easy to quantify (e.g. financial costs) and
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Figure 5.3: Conditional distribution Prob {y|x} where x is the current month and
y is the random weather state. For example, the column corresponding to x =Dec
and y =RAIN returns the conditional probability of RAIN in December.

some much less (e.g. ethical considerations)2. Note that in the case of the 0-1 loss
function (Equation 5.3.9) all the elements outside the diagonal are equal to one.

The goal of the classification procedure for a given x is to find the predictor
ĉ(x) = h(x, α) that minimises the quantity

K∑
k=1

L(ĉ(x),ck)Prob {y = ck|x} (5.3.10)

which is an average of the ĉ(x) row of the loss matrix weighted by the conditional
probabilities of observing y = ck. Note that the average of the above quantity over
the X domain∫

X

K∑
k=1

L(ĉ(x),ck)Prob {y = ck|x} dFx =

∫
X ,Y

L(y, h(x, α))dFx,y = R(α) (5.3.11)

corresponds to the functional risk (5.2.3).
The problem of classification can then be seen as a particular instance of the

more general supervised learning problem described in Section 5.2.

5.3.1 The Bayes classifier

It can be shown that the optimal classifier h(·, α0) where α0 is defined as in (5.2.4)
is the one that returns for all x

c∗(x) = h(x, α0) = arg min
cj∈{c1,...,cK}

K∑
k=1

L(j,k)Prob {y = ck|x} (5.3.12)

2By default, any automatic classifier (and the associated decision maker) implicitly or explicitly
embeds a loss function weighting often highly heterogeneous criteria. For instance, the Tesla
automatic braking systems (implicitly or explicitly) assigns a cost to false positives (e.g. a bag
wrongly identified as a pedestrian) and false negatives (e.g. a pedestrian mistaken for a bag).
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The optimal classifier is also known as the Bayes classifier. In the case of a 0-1 loss
function, the optimal classifier returns

c∗(x) = arg min
cj∈{c1,...,cK}

∑
k=1:K,k 6=j

Prob {y = ck|x} (5.3.13)

= arg min
cj∈{c1,...,cK}

(1− Prob {y = cj |x}) (5.3.14)

= arg min
cj∈{c1,...,cK}

Prob {y 6= cj |x} = arg max
cj∈{c1,...,cK}

Prob {y = cj |x}

(5.3.15)

The Bayes decision rule selects the j, j = 1, . . . ,K, that maximizes the posterior
probability Prob {y = cj |x}.

Example

Consider a classification task where X = {1, 2, 3, 4, 5}, Y = {c1, c2, c3} and the loss
matrix and the conditional probability values are given in the following figures.

Let us focus on the optimal classification for x = 2. According to (5.3.12) the Bayes
classification rule for x = 2 returns

c∗(2) = arg min
k=1,2,3

{L11Prob {y = c1|x = 2}+ L12Prob {y = c2|x = 2}+ L13Prob {y = c3|x = 2} ,

L21Prob {y = c1|x = 2}+ L22Prob {y = c2|x = 2}+ L23Prob {y = c3|x = 2} ,
L31Prob {y = c1|x = 2}+ L32Prob {y = c2|x = 2}+ L33Prob {y = c3|x = 2}}
= arg min

k=1,2,3
{0 ∗ 0.2 + 1 ∗ 0.8 + 5 ∗ 0.0, 20 ∗ 0.2 + 0 ∗ 0.8 + 10 ∗ 0.0,

2 ∗ 0.2 + 1 ∗ 0.8 + 0.0 ∗ 0} = arg min
k=1,2,3

{1, 4, 1.2} = 1

What would have been the Bayes classification in the 0-1 case?

•

5.3.2 Inverse conditional distribution

An important quantity, often used in classification algorithms, is the inverse condi-
tional distribution. According to the Bayes theorem, (2.6.24) we have that

Prob {y = ck|x = x} =
Prob {x = x|y = ck}Prob {y = ck}∑K
k=1 Prob {x = x|y = ck}Prob {y = ck}

(5.3.16)

and that

Prob {x = x|y = ck} =
Prob {y = ck|x = x}Prob {x = x}∑
x Prob {y = ck|x = x}Prob {x = x}

. (5.3.17)
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Figure 5.4: Class conditional distributions: the green class is distributed as a mix-
ture of two Gaussians while the red class as a Gaussian.

The above relation means that by knowing the a-posteriori conditional distribution
Prob {y = ck|x = x} and the a-priori distribution Prob {x = x}, we can derive the
inverse conditional distribution Prob {x = x|y = ck}. This distribution is replaced
by a density if x is continuous and is also known as the class conditional density.
This distribution characterises the values of the inputs x for a given class ck.

Shiny dashboard

The Shiny dashboard classif2.R illustrates a binary classification task where
x ∈ R2 and the two classes are green and red. The green and the class condi-
tional distributions (5.3.17) are a mixture of two Gaussians (Section 2.15.2) and a
unimodal Gaussian, respectively (Figure 5.4). Figure 5.5 illustrates the associated
conditional distribution (5.3.16) if the two classes have an equal a priori proba-
bility (Prob {y = red} = Prob {y = green}). Figure 5.6 shows the scattering of a
set of N = 500 points sampled according to the class-conditional distributions in
Figure 5.4.

•

Example

Suppose we want to know during which months it is most probable to have rain.
This boils down to have the distribution of x for y = RAIN . Figure 5.7 plots the in-
verse conditional distributions Prob {x = month|y = RAIN} and
Prob {x = month|y = NO.RAIN} according to (5.3.17) when we assume that the a
priori distribution is uniform (i.e. Prob {x = x} = 1/12 for all x).

Note that∑
month

Prob {x = month|y = NO.RAIN} =

=
∑

month

Prob {x = month|y = RAIN} = 1
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Figure 5.5: The a posteriori conditional distribution associated to the class-
conditional distributions (equal a priori probability) in Figure 5.4.

Figure 5.6: Dataset sampled according to the class-conditional distributions (equal
a priori probability) in Figure 5.4.
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Figure 5.7: Inverse conditional distribution of the distribution in Figure 5.3

•

5.4 Dependency and regression

Consider the stochastic relationship between two continuous random variables x ∈
Rn and y ∈ R described by

Fx,y(x, y) (5.4.18)

This means that to each vector x sampled according to the Fx(x) there corresponds
a scalar y sampled from Fy(y|x = x). Assume that a set of N input/output obser-
vations is available. The estimation of the stochastic dependence on the basis of the
empirical dataset requires the estimation of the conditional distribution Fy(y|x).
This is known to be a difficult problem but for prediction purposes, most of the
time, it is sufficient to estimate the conditional expectation

f(x) = Ey[y|x] =

∫
Y
ydFy(y|x) (5.4.19)

also known as the regression function.
The regression function is also related to the functional risk

R(α) =

∫
L(y, h(x, α))dFx,y(x, y) =

∫
(y − h(x, α))2dFx,y(x, y) (5.4.20)

for the quadratic loss L(y, h) = (y − h)2 . From (2.14.67) it can be shown that
the minimum (5.2.4) is attained by the regression function h(·, α0) = f(·) if the
function f belongs to the set h(x, α), α ∈ Λ.

Once defined the regression function f , the input/output stochastic depen-
dency (5.4.18) is commonly represented in the regression plus noise form

y = f(x) + w = Ey [y|x] + w (5.4.21)

where w denotes the noise term and satisfies E[w] = 0 and E[w2] = σ2
w. The role of

the noise is to make explicit that some variability of the target cannot be explained
by the regression function f . Notice that the assumption of an additive noise w
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independent of x is common in statistical literature and is not overly restrictive. In
fact, many other conceivable signal/noise models can be transformed into this form.

The problem of estimating the regression function (5.4.19) is then a particular
instance of the supervised learning problem described in Section 5.2, where the
learning machine is assessed by a quadratic cost function. Examples of learning
algorithms for regression will be discussed in Section 7.1 and Section 8.1.

5.5 Assessment of a learning machine

A learning machine works well if it exhibits good generalisation, i.e. if it is able
to perform good predictions for unseen input values, which are not part of the
training set but that are generated by the same input/output distribution (5.2.2)
underlying the training set. This ability is commonly assessed by the number of
bad predictions, measured by the generalisation error. The generalisation error of
a learning machine can be evaluated at two levels:

Hypothesis: Let αN be the hypothesis returned by a learning algorithm for a
training set DN according to the ERM principle (Eq. (5.2.7)). The functional
risk R(αN ) in (5.2.3) represents the generalisation error of the hypothesis αN .
This quantity is also known as conditional error rate [89] since it is conditional
on a given training set DN .

Algorithm: Let us define the average of the loss L for a given input x over the
ensemble of training sets of size N as

gN (x) = EDN ,y[L|x = x] =

∫
ZN ,Y

L(y, h(x, αN ))dFy(y|x)dFNz (DN )

(5.5.22)
where FNz (DN ) is the distribution of the i.i.d. dataset DN . In this expression
L is a function of the random variables DN (through h) and y, while the
test input x is fixed. In the case of a quadratic loss function, this quantity
corresponds to the mean squared error (MSE) defined in Section 3.5.6. By
averaging the quantity (5.5.22) over the X domain we have

GN =

∫
X
gN (x)dFx(x) = EDN

Ex,y[L(y, h(x,αN ))] (5.5.23)

that is the generalisation error of the algorithm L (also known as expected
error rate [62] or expected test error [89]).

From (5.2.3) and (5.5.23) we obtain that

GN = EDN
[R(αN )]

where R(αN ) is random because of the dependence on DN (Figure 5.8).

In the case of a quadratic loss function, the quantity

MISE = EDN
Ex,y[(y − h(x,αN ))2] (5.5.24)

takes the name of mean integrated squared error (MISE).

The two criteria correspond to two different ways of assessing the learning machine:
the first is a measure to assess the specific hypothesis (5.2.7) chosen by ERM, the
second assesses the average performance of the algorithm over training sets with N
observations. According to the hypothesis-based approach the goal of learning is
to find, on the basis of observations, the hypothesis that minimises the functional
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Figure 5.8: Functional risk vs. MISE

risk. According to the algorithmic-based approach the goal is to find, on the basis
of observations, the algorithm which minimises the generalisation error. Note that
both quantities requires the knowledge of Fx,y which is unfortunately unknown
in real situations. A key issue in machine learning is then to take advantage of
observable quantities, i.e. quantities that may be computed on the basis of the
observed dataset, to estimate or approximate the measures discussed above. An
important quantity in this sense is the empirical risk (5.2.8) which, however, has to
be carefully manipulated in order to avoid too optimistic evaluations of the learning
machine accuracy.

5.5.1 An illustrative example

The notation introduced in Section 5.2 and 5.5 is rigorous but it may appear hostile
to the practitioner. In order to make the statistical concepts more affordable, we
present a simple example to illustrate these concepts. We consider a supervised
learning regression problem where :

• The input is a scalar random variable x ∈ R with a uniform probability
distribution over the interval [−2, 2].

• The target is distributed according to a conditional Gaussian distribution

py(y|x = x) = N (x3, 1) (5.5.25)

where the conditional expected value E[y|x] is the regression function f(x) =
x3 and the noise w has a unit variance.

• The training set DN = {〈xi, yi〉}, i = 1, . . . , N consists of N = 100 i.i.d. pairs
(Figure 5.9) generated according to the distribution 5.5.25. Note that this
training set can be easily generated with the following R commands
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Figure 5.9: Training set (dots) obtained by sampling uniformly in the interval [−2, 2]
an input/output distribution with regression function f(x) = x3 and unit variance.

## script regr.R

N<-100

X<-runif(N,-2,2)

Y=X^3+rnorm(N)

plot(X,Y)

• The learning machine is characterised by the following three components:

1. A class of hypothesis functions h(x, α) = αx consisting of all the linear
models passing through the origin. The class Λ is then the set of real
numbers.

2. A quadratic loss L(y, h(x)) = (y − h(x))
2
.

3. An algorithm of parametric identification based on the least-squares tech-
nique, which will be detailed later in Section 7.1.2. The empirical risk is
the quantity

Remp(α) =
1

100

100∑
i=1

(yi − αxi)2 (5.5.26)

The empirical risk is a function of α and the training set. For the given
training set DN , the empirical risk as a function of α is plotted in Fig.
5.10.

For the dataset DN in Figure 5.9, it is possible to obtain αN by minimising the
empirical risk (5.5.26)

αN = arg min
α∈Λ

Remp(α) = arg min
α∈Λ

1

100

100∑
i=1

(yi − αxi)2 = 2.3272 (5.5.27)
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Figure 5.10: The empirical risk for the training set DN vs. the model parameter
value (x-axis). The minimum of the empirical risk is attained in α = 2.3272.

The selected hypothesis is plotted in the input/output domain in Fig. 5.11.

If the joint distribution (e.g. its conditional expectation and variance) were to
be known, it would also be possible to compute the risk functional (5.2.3) as

R(α) =
1

4

∫ 2

−2

(x3 − αx)2dx+ 1 = 4
α2

3
− 32

5
α+ 71/7 (5.5.28)

where the derivation of the equality is sketched in Appendix D.14. For the given
joint distribution, the quantity R(α) is plotted as a function of α in Fig. 5.12. The
function takes a global minimum in α0 = 2.4 as can be derived from the analytical
expression in (5.5.28).

The computation of the quantity (5.5.22) requires, however, an average over all
the possible realisations of the random variable αN for datasets of N = 100 points.
Figure 5.13 shows 6 different realisations of the training set for the same conditional
distribution (5.5.25) and the corresponding 6 values of αN . Note that those six
values may be considered as 6 different realisations of the sampling distribution
(Section 3.4) of αN .

It is important to remark that both the quantities (5.2.3) and (5.5.22) may be
computed only if we know a priori the data joint distribution. Unfortunately, in
real cases this knowledge is not accessible and the goal of learning theory is to study
the problem of estimating these quantities from a finite set of data.

Monte Carlo computation of generalisation error

The script StatLearn/functRisk.R computes by Monte Carlo the functional risk (5.5.28)
for different values of α and returns the value of α0 = 2.4 which minimises it. Note
that the functional risk is computed by generating a very large number of i.i.d. test
examples.

The script StatLearn/gener.R computes by Monte Carlo the generalisation
error (5.5.23). Unlike the previous script which considers only the predictive value
of different hypotheses (with different α), this script assesses the average accuracy
of the empirical risk minimisation strategy (5.5.27) for a finite number N = 100 of
examples.

•
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Figure 5.11: Training set (dotted points) and the linear hypothesis function h(·, αN )
(straight line). The quantity αN , which represents the slope of the straight line, is
the value of the model parameter α which minimises the empirical risk.

Figure 5.12: The functional risk (5.5.28) vs. the value of model parameter α (x-
axis). The minimum of the functional risk is attained in α0 = 2.4.
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Figure 5.13: Six different realisations of a training set with N = 100 points (dots)
and the relative hypotheses (solid straight lines) chosen according to the ERM
principle (5.5.27).
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5.6 Generalisation error

In the previous section, we presented how Vapnik [161, 162, 163] formalised the
learning task as the minimisation of functional risk R(αN ) in a situation where the
joint distribution is unknown. This section focuses on the algorithm-based criterion
GN (Equation (5.5.24)) as a measure of the generalisation error of the learning
machine.

In particular we will study how the generalisation error can be decomposed in
the regression formulation and in the classification formulation.

5.6.1 The decomposition of the generalisation error in re-
gression

Let us focus now on of the gN measure (Equation (5.5.22)) of the generalisation
error in the case of regression. In the case of a quadratic loss

L(y(x), h(x, α)) = (y(x)− h(x, α))2 (5.6.29)

the quantity gN is often referred to as the mean squared error (MSE) and its
marginal (5.5.24) as the mean integrated squared error (MISE). If the regression
dependency is described in the regression plus noise form (5.4.21), the conditional
target density can be written as

py(y − f(x)|x) = py(y − Ey[y|x]|x) = pw(w) (5.6.30)

where w is a noisy random variable with zero mean and variance σ2
w.

This supervised learning problem can be seen as a particular instance of the
estimation problem discussed in Chapter 3, where, for a given x, the unknown
parameter θ to be estimated is the quantity f(x) and the estimator based on the

training set is θ̂ = h(x,αN ). The MSE quantity, defined in (3.5.17) coincides, apart
from an additional term, with the term (5.5.22) since

gN (x) = EDN ,y[L|x] = (5.6.31)

= EDN ,y

[
(y − h(x,αN ))2

]
= (5.6.32)

= EDN ,y

[
(y − Ey [y|x] + Ey [y|x]− h(x,αN ))2

]
= (5.6.33)

= EDN ,y

[
(y − Ey [y|x])2 + 2w(Ey [y|x]− h(x,αN ))+ (5.6.34)

+ (Ey [y|x]− h(x,αN ))2
]

= (5.6.35)

= Ey

[
(y − Ey [y|x])2

]
+ EDN

[
(h(x,αN )− Ey [y|x])2

]
= (5.6.36)

= Ey

[
w2
]

+ EDN

[
(h(x,αN )− Ey [y|x])2

]
(5.6.37)

= σ2
w + EDN

[(f(x)− h(x,αN ))2] = σ2
w + EDN

[(θ − θ̂)2] = (5.6.38)

= σ2
w + MSE (5.6.39)

Note that y = f(x) + w = Ey [y|x] + w, f is fixed but unknown and that the noise
term w is independent of DN and satisfies E[w] = 0 and E[w2] = σ2

w

We can then apply bias/variance decomposition (3.5.17) to the regression prob-

lem where θ = f(x) and θ̂ = h(x,αN ):

gN (x) = EDN ,y [L(x, y)] =

= σ2
w + EDN

[
(h(x,αN )− Ey [y|x])2

]
=

= σ2
w + noise variance

+ (EDN
[h(x,αN )]− Ey [y|x])2 + squared bias

+ EDN

[
(h(x,αN )− EDN

[h(x,αN )])2
]

= model variance

= σ2
w +B2(x) + V (x)

(5.6.40)
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In a regression task, the bias B(x) measures the difference in x between the aver-
age of the outputs of the hypothesis functions over the set of possible DN and the
regression function value f(x) = Ey[y|x]. The variance V (x) reflects the variabil-
ity of the guessed h(x,αN ) as one varies over training sets of fixed dimension N .
This quantity measures how sensitive the algorithm is to changes in the data set,
regardless of the target. So by Eq. (5.5.24) by averaging (5.6.40) over X we obtain

MISE = GN = σ2
w +

∫
X
B2(x)dFx +

∫
X
V (x)dFx (5.6.41)

where the three terms are

1. the intrinsic noise term reflecting the target alone,

2. the integrated squared bias reflecting the target’s relation with the learning
algorithm and

3. the integrated variance term reflecting the learning algorithm alone.

As the aim of a learning machine is to minimise the quantity GN and the com-
putation of (5.6.41) requires the knowledge of the joint input/output distribution,
this decomposition could appear as a useless theoretical exercise. In practical set-
tings, the designer of a learning machine does not have access to the term GN but
can only estimate it on the basis of the training set. Nevertheless, the bias/variance
decomposition is relevant in practical learning too since it provides a useful hint
about how to control the error GN . In particular, the bias term measures the lack
of representational power of the class of hypotheses. This means that to reduce the
bias term of the generalisation error we should consider classes of hypotheses with
a large capacity s, or, in other words, hypotheses which can approximate a large
amount of input/output mappings. On the other side, the variance term warns us
against an excessive capacity (or complexity) s of the approximator. This means
that a class of too powerful hypotheses runs the risk of being excessively sensitive to
the noise affecting the training set; therefore, our class Λs could contain the target
but it could be practically impossible to find it out on the basis of the available
dataset.

In other terms, it is commonly said that a hypothesis with large bias but low
variance underfits the data while a hypothesis with low bias but large variance
overfits the data. In both cases, the hypothesis gives a poor representation of the
target and a reasonable trade-off needs to be found.

A graphical illustration of the bias/variance/noise tradeoff (5.6.41) is made in
Figure 5.14. The left side of the figure corresponds to an underfitting configuration
where the model has too low capacity (i.e. high bias) to capture the nonlinearity
of the regression function. The right side of the figure corresponds to an overfitting
configuration where the model capacity is too large (i.e. high variance) leading then
to high instability and poor generalisation. Note that Figure 5.14 requires a formal
definition of the notion of capacity and that it is only a qualitative visualisation of
the theoretical link between the hypothesis’ properties and the capacity of the class
of functions. Nevertheless it provides useful hints about the impact of the learning
procedure on the final generalisation accuracy. The task of the model designer is to
search for the optimal trade-off between the variance and the bias terms (ideally the
capacity s∗ in Figure 5.14), on the basis of the available training set. Section 5.8
will discuss how this search proceeds in practice in a real setting.

Two naive predictors

Consider a regression task y = f(x) + w, where Var [w] = σ2
w and two naive

predictors:
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Capacity

Underfitting

Overfitting

Noise variance

Model 
variance

Squared bias

s*

MISE

Figure 5.14: Bias/variance/noise tradeoff in regression: this is a qualitative rep-
resentation of the relationship between the hypothesis’ bias and variance and the
capacity of the class of functions. The MISE generalisation error is the sum of
the three terms (squared bias, hypothesis variance and noise variance) as shown
in (5.6.41). Note that the variance of the noise is supposed to be target indepen-
dent and then constant.

1. h(1)(x) = 0

2. h(2)(x) =
∑N
i=1 yi
N

What about their generalisation errors in x = x̄? By using (5.6.40) we obtain

1. g
(1)
N (x̄) = σ2

w + f(x̄)2

2. g
(2)
N (x̄) = σ2

w + (f(x̄)− E[y])2 + Var [y] /N

The script StatLearn/naive.R executes a Monte Carlo validation of the formu-
las above.

•

5.6.2 The decomposition of the generalisation error in clas-
sification

Let us consider a classification task with K output classes and a loss function L.
For a given input x, we denote by ŷ the class predicted by the classifier h(x,αN )
trained with a dataset DN . We derive the analytical expression of gN (x), usually
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referred to as the mean misclassification error (MME).

MME(x) = Ey,DN
[L(y, h(x,αN ))|x] = Ey,DN

[L(y, ŷ)] = (5.6.42)

= Ey,DN
[

K∑
k,j=1

L(j,k)1(ŷ = cj |x)1(y = ck|x)] = (5.6.43)

=

K∑
k,j=1

L(j,k)EDN
[1(ŷ = cj |x)]Ey[1(y = ck|x)]] = (5.6.44)

=

K∑
k,j=1

L(j,k)Prob {ŷ = cj |x}Prob {y = ck|x} (5.6.45)

where 1(·) is the indicator function which returns zero when the argument is false
and one otherwise. Note that the distribution of ŷ depends on the training set DN

while the distribution of y is the distribution of a test set (independent of DN ).
For zero-one loss function, since y and ŷ are independent, the MME expression
simplifies to

MME(x) =

K∑
k,j=1

1(cj 6= ck)Prob {ŷ = cj |x}Prob {y = ck|x} =

= 1−
K∑

k,j=1

1(cj = ck)Prob {ŷ = cj |x}Prob {y = ck|x} =

= 1−
K∑
k

Prob {ŷ = ck|x}Prob {y = ck|x} = Prob {y 6= ŷ} (5.6.46)

A decomposition of a related quantity was proposed in [172]. Let us consider
the squared sum:

1

2

K∑
j=1

(Prob {y = cj} − Prob {ŷ = cj})2
=

1

2

 K∑
j=1

Prob {y = cj}2
+

1

2

 K∑
j=1

Prob {ŷ = cj}2
− K∑

j=1

Prob {y = cj}Prob {ŷ = cj}

By adding one to both members and by using (5.6.42) we obtain a decomposition
analogous to the one in (5.6.40)

gN (x) = MME(x) =

=
1

2

1−

 K∑
j=1

Prob {y = cj |x}2
+ “noise”

+
1

2

K∑
j=1

(Prob {y = cj |x} − Prob {ŷ = cj |x})2
+ “squared bias”

+
1

2

1−

 K∑
j=1

Prob {ŷ = cj |x}2
 “variance”

(5.6.47)

The noise term measures the degree of uncertainty of y and consequently the degree
of stochasticity of the dependence. It equals zero if and only if there exists a class c
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such that Prob {y = c|x} = 1 and zero otherwise. Note that this quantity does not
depend on the learning algorithm nor on the training set.

The variance term measures how variant the classifier prediction ŷ = h(x,αN )
is. This quantity is zero if the predicted class is always the same regardless of the
training set.

The squared bias term measures the squared difference between the y and the
ŷ probability distributions on the domain Y.

5.7 The hypothesis-based vs the algorithm-based
approach

In the previous sections we introduced two different manners of assessing the accu-
racy of a learning machine. The reader could logically raise the following question:
which approach is the most adequate in practice?

Instead of providing a direct answer to such a question, we prefer to conduct a
short comparison of the assumptions and limitations related to the two approaches.

The hypothesis-based approach formulates learning as the problem of finding
the hypothesis which minimises the functional risk. Vapnik reformulates this prob-
lem into the problem of consistency of a learning process based on ERM. The main
result is that it is possible to define a probabilistic distribution-free bound on the
functional risk which depends on the empirical risk and the VC dimension of the
class of hypothesis. Though this achievement is impressive from a theoretical and
scientific perspective (it was published in a Russian book in the 60s), its adop-
tion in practical settings is not always easy for several reasons: results derive from
asymptotic considerations though learning by definition deals with finite samples,
the computation of the VC dimension is explicit only for specific classes of hypoth-
esis functions and the bound, derived from worst-case analysis, is not always tight
enough for practical purposes.

The algorithm-based approach relies on the possibility of emulating the stochas-
tic process underlying the dataset by means of resampling procedures like cross-
validation or bootstrap. Note that this approach is explicitly criticised by Vapnik
and others who consider it inappropriate to reason in terms of data generation once
a single dataset is available. According to [54] ”averaging over the data would be
unnatural, because in a given application, one has to live with the data at hand. It
would be marginally useful to know the number GN as this number would indicate
the quality of an average data sequence, not your data sequence”. Nevertheless,
though it is hard to guarantee formally the accuracy of a resampling strategy, its
general-purpose nature, simplicity and ease of implementation have been, along
years, key ingredients of its success.

Whatever the degree of realism of the hypothesis made by the two approaches
is, it is worth making a pragmatic and historical consideration. Though the Vap-
nik results represent a major scientific success and underlie the design of powerful
learning machines (notably SVM), in a wider perspective it is fair to say that cross-
validation is the most common and successful workhorse of practical learning appli-
cations. This means that, though most data scientists have been eager to formalise
the consistency of their algorithms in terms of Vapnik bounds, in practice they had
recourse to intensive cross-validation tricks to make it work in the real world. Now,
more than 60 years after the first computational version of learning processes, we
have enough evidence to say that cross-validation is a major element of the machine
learning success story. This is the reason why in the following sections we will focus
on an algorithm-based approach aiming to assess (and minimise) the generalisation
error by means of a resampling strategy.



5.8. THE SUPERVISED LEARNING PROCEDURE 149

5.8 The supervised learning procedure

The goal of supervised learning is to return the hypothesis with the lowest gen-
eralisation error. Since we assume that data samples are generated in a random
way, there is no hypothesis which gives a null generalisation error. Therefore, the
generalisation error GN of the hypothesis returned by a learning machine has to
be compared to the minimal generalisation error that can be attained by the best
single-valued mapping. Let us define by Λ∗ the set of all possible single/valued
mappings h : X → Y and consider the hypothesis

α∗ = arg min
α∈Λ∗

R(α) (5.8.48)

where R(α) has been defined in (5.2.3).
Thus, R(α∗) represents the absolute minimum rate of error obtainable by a

single/valued approximator of the unknown target. For maintaining a simple no-
tation, we put G∗ = R(α∗). For instance, in our illustrative example in Section
5.5.1, α∗ denotes the parameters of the cubic function and G∗ amounts to the unit
variance of the Gaussian noise.

In theoretical terms, a relevant issue is to demonstrate that the generalisation
error GN of the model with parameters αN learned from the dataset DN converges
to the minimum G∗ for N going to infinity. Unfortunately, in real learning settings,
two problems must be dealt with. The first is that the error GN cannot be computed
directly but has to be estimated from data. The second is that a single class Λ could
not be large enough to contain the hypothesis α∗.

A common practice to handle these problems is to decompose the learning pro-
cedure in the following sequence of steps:

1. A nested sequence of classes of hypotheses

Λ1 ⊆ · · · ⊆ Λs ⊆ . . .ΛS (5.8.49)

is defined so that Λ∗ = ∪Ss=1Λs where s denotes the capacity of the class. This
guarantees that the set of hypotheses taken into consideration will necessarily
contain the best hypothesis α∗.

A priori information as well as considerations related to the bias/variance
dilemma can help in the design of this sequence.

2. For each class in the sequence, a hypothesis h(·, αsN ), s = 1, . . . , S, is selected
by minimising the empirical risk (5.2.8). This step is defined as the parametric
identification step of the learning procedure.

3. For each class in the sequence, a validation procedure returns ĜsN which esti-
mates the generalisation error GsN of the hypothesis αsN . This step is called
the validation step of the learning procedure.

4. The hypothesis h(·, αs̄N ) ∈ Λs̄ with

s̄ = arg min
s
ĜsN (5.8.50)

is returned as the final outcome. This final step is called the model selection
step.

In order to accomplish the learning procedure, and specifically the selection in (5.8.50),
we need an estimation of the generalisation error (Section 5.9). However, since the
estimator of the generalisation error may be affected by an error (as any estima-
tor), this may induce an error and variability in the model selection step (5.8.50)
(Figure 5.15).
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Figure 5.15: Bias/variance/noise tradeoff and model selection: since the generali-
sation error (e.g. MISE) is not accessible in practical settings, model selection is
performed on the basis of an estimation (dotted line) which may induce an error
(and variability) in the selection (5.8.50) of the best capacity.

5.9 Validation techniques

This section discusses validation methods to estimate the generalisation error GN
from a finite set of N observations.

The empirical risk (also called apparent error) Remp(αN ) introduced in (5.2.7)
could be the most intuitive estimator of GN . However, it is generally known that the
empirical risk is a biased (and optimistic) estimate of GN and that Remp(αN ) tends
to be smaller than GN , because the same data have been used both to construct
and to evaluate h(·, αN ). A demonstration of the biasedness of the empirical risk
for a quadratic loss function in a regression setting is available in Appendix D.15.
In Section 7.1.16 we will analytically derive the biasedness of the empirical risk in
case of linear regression models.

The study of error estimates other than the apparent error is of significant
importance if we wish to obtain results applicable to practical learning scenarios.
There are two main ways to obtain better, i.e. unbiased, estimates of GN : the first
requires some knowledge on the distribution underlying the data set, the second
makes no assumptions on the data. As we will see later, an example of the first
approach is the FPE criterion (presented in Section 7.1.16.2) while examples of the
second approach are the resampling procedures.

5.9.1 The resampling methods

Cross-validation [152] is a well-known method in sampling statistics to circumvent
the limits of the apparent error estimate. The basic idea of cross-validation is that
one builds a model from one part of the data and then uses that model to predict
the rest of the data. The dataset DN is split l times in a training and a test subset,
the first containing Ntr examples, the second containing Nts = N −Ntr examples.
Each time, Ntr examples are used by the parametric identification algorithm L to
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Figure 5.16: Partition of the training dataset in the ith fold of cross-validation. The
quantity N i

tr is the amount of training points while N i
ts is the number of test points.

select a hypothesis αiNtr , i = 1, . . . , l, from Λ and the remaining Nts examples are

used to estimate the error of h(·, αiNtr ) (Fig. 5.16)

R̂ts(α
i
Ntr ) =

Nts∑
j=1

L(yj , h(xj , α
i
Ntr )) (5.9.51)

The resulting average of the l errors R̂ts(α
i
Ntr

), i = 1, . . . , l, is the cross-validation
estimate

Ĝcv =
1

l

l∑
i=1

R̂ts(α
i
Ntr ) (5.9.52)

A common form of cross-validation is the “leave-one-out” (l-o-o). Let D(i) be the
training set with zi removed, and h(x, αN(i)) be the corresponding prediction rule.
The l-o-o cross-validated error estimate is

Ĝloo =
1

N

N∑
i=1

L
(
yi, h(xi, αN(i))

)
(5.9.53)

In this case l equals the number of training points and Nts = 1.
Bootstrap (Section 4.4) is also used to return a nonparametric estimate of GN ,

by repeatedly sampling the training cases with replacement. Since empirical risk is
a biased optimistic estimation of generalisation error and bootstrap is an effective
method to assess bias (Section 4.4.3), it follows that bootstrap plays a role in a
validation strategy.

A bootstrap sample D(b) is a “fake” dataset {z1b, z2b, . . . , zNb}, b = 1, . . . , B
randomly selected from the training set {z1, z2, . . . , zN} with replacement.

Efron and Tibshirani [61] proposed to use bootstrap to correct the bias (or
optimism) of empirical risk by adopting a strategy similar to Section 4.4.3. Equa-
tion (4.4.9) estimates the bias of an estimator by computing the gap between the
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average bootstrap (4.4.8) estimate and the sample estimation. In the case of gener-

alisation, the sample estimation θ̂ is the empirical risk and the bootstrap estimate
θ̂(·) may be computed as follows

Ĝ(·) =
1

B

[
N∑
i=1

(PibL
(
yi, h(xi, α(b))

)]
(5.9.54)

where Pib indicates the proportion of the bootstrap sample D(b), b = 1, . . . , B
containing the ith training point zi,

Pib =
#N
j=1(zjb = zi)

N
(5.9.55)

and α(b) is the output of the parametric identification performed on the set D(b).

The difference between empirical risk and (5.9.54)

Biasbs =
1

B

B∑
b=1

N∑
i=1

(
(Pib −

1

N
)L
(
yi, h(xi, α(b))

))
(5.9.56)

is the bias correction term to be subtracted to empirical risk to obtain a bootstrap
bias corrected estimate (4.4.10) of the generalisation error.

An alternative consists in using the holdout principle in combination with the
bootstrap one [61]. Since each bootstrap set is a resampling of the original training
set, it may happen that some of the original examples (called out-of-bag) do not
belong to it: we can then use them to have an independent holdout set to be used
for generalisation assessment. The bootstrap estimation of the generalisation error
(also known as E0) is then

Ĝbs =
1

N

N∑
i=1

1

|B(i)|
∑
b∈B(i)

L
(
yi, h(xi, α(b))

)
(5.9.57)

where B(i) is the set of bootstrap samples which do not contain the ith point and
|B(i)| is its size. The terms where |B(i)| = 0 are discarded.

5.10 Concluding remarks

The goal of a learning procedure is to return a hypothesis which is able to predict
accurately the outcome of an input/output probabilistic mapping on the basis of
past observations. In order to achieve this goal, the learning procedure has to deal
with some major difficulties.

Models are approximations: in most situations we will not be able to guess or
at least get close to the correct or true model. Still worse, even knowing
the class to which the true model belongs, we should better disregard such
information, if the class is too large to be properly explored with the help of
a finite dataset. In the George Box’s sense the most useful model could not
necessarily belong to the class of the true model.

Minimisation of the empirical risk: in a general case finding the global mini-
mum of the empirical risk as in (5.2.7) demands the resolution of a multivari-
ate and nonlinear optimisation problem for which no analytical solution could
exist. Some heuristics to address this issue are discussed in Section 6.6.
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Finite number of data: in real problems, a single random realisation of the sta-
tistical process, made of a finite number of input/output pairs, is accessible to
the learning machine. This means that the hypothesis generated by a learning
algorithm is a random variable as well. In theory, it would be required to have
access to the underlying process and to generate several times the training set,
in order to have a reliable assessment of the learning algorithm. In practice,
the use of repeated realisations is not viable in a real learning problem.

The validation procedure copes with this problem by trying to assess a random
variable on the basis of a single realisation. In particular we focused on cross-
validation, a resampling method which works by simulating the stochastic
process underlying the data.

No a priori knowledge: we consider a setting where no knowledge about the
process underlying the data is available. This lack of a priori knowledge puts
no constraints on the complexity of the class of hypotheses to consider, with
the consequent risk of using an inadequate type of approximator. The model
selection deals with this issue by considering classes of hypotheses of increasing
complexity and selecting the one which behaves the best according to the
validation criteria. This strategy ensures the covering of the whole spectrum of
approximators, ranging from low bias/high variance to high bias/low variance
models, making easier the selection of a good trade-off on the basis of the
available data.

So far, the learning problem has been introduced and discussed for a generic class
of hypotheses, and we did not distinguish on purpose between different learning
machines. The following chapter will show the parametric and the structural iden-
tification procedure as well as the validation phase for some specific learning ap-
proaches.

5.11 Exercises

1. Consider an input/output regression task where n = 1, E[y|x] = sin(πx/2) and
p(y|x) = N (sin(πx/2), σ2), σ = 0.1 and x ∼ U(−2, 2). Let N be the size of the
training set and consider a quadratic loss function.

Let the class of hypothesis be hM (x) = α0 +
∑M
m=1 αmx

m with αj ∈ [−2, 2], j =
0, . . . ,M .

For N = 20 generate S = 50 replicates of the training set. For each replicate,
estimate the value of the parameters that minimise the empirical risk, compute the
empirical risk and the functional risk.

1. Plot the evolution of the distribution of the empirical risk for M = 0, 1, 2.

2. Plot the evolution of the distribution of the functional risk for M = 0, 1, 2.

Hints: to minimise the empirical risk, perform a grid search in the space of pa-
rameter values, i.e. by sweeping all the possible values of the parameters in the
set [−1,−0.9,−0.8, . . . , 0.8, 0.9, 1]. To compute the functional risk by Monte Carlo,
generate a set of Nts = 10000 i.i.d. input/output testing examples.

Solution: See the file Exercise6.pdf in the directory gbcode/exercises of the
companion R package (Appendix G).
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Chapter 6

The machine learning
procedure

6.1 Introduction

Raw data is rarely of direct benefit. Its true value resides in the amount of informa-
tion that a model designer can extract from it. Modelling from data is often viewed
as an art form, mixing the insight of the expert with the information contained in the
observations. Typically, a modelling process is not a sequential process but is better
represented as a sort of loop with a lot of feedback and a lot of interactions with
the designer. Different steps are repeated several times aiming to reach, through
continuous refinements, a good model description of the phenomenon underlying
the data.

This chapter reviews the practical steps constituting the process of constructing
models for accurate prediction from data. Note that the overview is presented with
the aim of not distinguishing between the different families of approximators and
of showing which procedures are common to the majority of modelling approaches.
The following chapters will be instead devoted to the discussion of the peculiarities
of specific learning approaches.

We partition the data modelling process into two phases: a preliminary phase
which leads from the raw data to a structured training set, and a learning phase,
which leads from the training set to the final model. The preliminary phase is
made of a problem formulation step (Section 6.2) where the designer selects the
phenomenon of interest and defines the relevant input/output features, an experi-
mental design step (Section 6.3) where input/output data are collected, and a data
preprocessing step (Section 6.4) where preliminary conversion and filtering of data
is performed.

Once the numeric dataset has been formatted, the learning procedure begins.
In qualitative terms, this procedure can be described as follows. First, the designer
defines a set of models (e.g. polynomial models, neural networks) characterised by
a capacity (or complexity) index (or hyper-parameter) (e.g. degree of the polyno-
mial, number of neurons, VC dimension) which controls the approximation power
of the model. According to the capacity index, the set of models is consequently
decomposed in a nested sequence of classes of models (e.g. classes of polynomials
with increasing degree). Hence, a structural identification procedure loops over the
set of classes, first by identifying a parametric model for each class (parametric
identification) and then by assessing the prediction error of the identified model on
the basis of the finite set of points (validation). Finally, a model selection procedure
selects the final model to be used for future predictions. A common alternative to
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model selection is a model combination, where a combination (e.g. averaging) of
the most promising models is used to return a meta-model, presumably with better
accuracy properties.

The problem of parametric identification is typically a problem of multivariate
optimisation [2]. Section 6.6 introduces the most common optimisation algorithms
for linear and nonlinear configurations. Structural identification is discussed in
Section 6.8, which focuses on the existing methods for model generation, model
validation and model selection. The last section concludes and resumes the whole
modelling process with the support of a diagram.

6.2 Problem formulation

The problem formulation is the preliminary and somewhat the most critical step of
a learning procedure. The model designer chooses a particular application domain
(e.g. finance), a phenomenon to be studied (e.g. the credit risk of a customer)
and hypothesises the existence of an unknown dependency (e.g. between the finan-
cial situation of the customer and the default risk) which is to be estimated from
experimental data. First, the modeller specifies a set of constructs, i.e. abstract
concepts or high-level topics which are potentially relevant for the study (e.g. the
profile and the financial situation of a client). Second, a set of variables (e.g. the
client age and her salary) is defined by grounding the constructs into a measurable
form. Eventually, an operationalisation, i.e. the definition of how to measure those
variables (e.g. by accessing a bank database), is proposed.

In this step, domain-specific knowledge and experience are the most crucial
requirements to come up with a meaningful problem formulation. Note that the
time spent in this phase is usually highly rewarding and can save vast amounts
of modelling time. There is often no substitute for physical intuition and human
analytical skills.

6.3 Experimental design

The most precious thing in data-driven modelling is the data itself. No matter how
powerful a learning method is, the resulting model would be ineffective if the data
are not informative enough. Hence, it is necessary to devote a great deal of attention
to the process of observing and collecting the data. In input/output modelling, it
is essential that the training set be a representative sample of the phenomenon and
cover the input space adequately. To this aim, it is relevant to consider the relative
importance of the various areas of the input space. Some regions are more relevant
than others, as in the case of a dynamical system whose state has to be regulated
about some specified operating point.

The discipline of creating an optimal sampling of the input space is called exper-
imental design [68]. The study of experimental design is concerned with locating
training input data in the space of input variables so that the performance of the
modelling process is maximised. However, in some cases, the designer cannot ma-
nipulate the process of collecting data, and the modelling process has to deal with
what is available. This configuration, which is common to many real problems, is
called the observational setting [40]. Though this setting seems the most adequate
for a learning approach (”just learn from what you observe”), it is worth reminding
that most of the time, behind an observation setting, there is the strong implicit
assumption that the observations are i.i.d. samples of a stationary (i.e. invariant)
stochastic process. Now, in most realistic cases, this assumption is not valid (at
least not for a long time), and considerations of nonstationarity, drift should be



6.4. DATA PRE-PROCESSING 157

integrated in the learning process. Other problems are related to the poor causal
value of inferences made in an observational setting, e.g. in situations of sampling
bias or non-observable variables. Nevertheless, given the introductory nature of
this book, in what follows, we will limit to consider the simplest observational and
stationary setting.

6.4 Data pre-processing

Once data have been recorded, it is common practice to pre-process them. The hope
is that such treatment might make learning easier and improve the final accuracy.

Pre-processing includes a large set of actions on the observed data, and some of
them are worth being discussed:

Numerical encoding. Some interesting data for learning might not be in a nu-
meric format (e.g. text, image). Since, in what follows, we will assume that
all data are numeric, a preliminary conversion or encoding step is needed.
Given that most encoding procedures are domain-specific, we will not further
discuss them here.

Missing data treatment. In real applications, it often happens that some input
values are missing. If the quantity of data is sufficiently large, the simplest
solution is to discard the examples having missing features. When the amount
of data is too restricted or there are too many partial examples, it becomes
important to adopt some specific technique to deal with the problem. Various
heuristics [85], as well as methods based on the Expectation Maximisation
(EM) algorithm [75], have been proposed in the literature. Note that any
missing data treatment strategy makes assumptions about the process that
caused some observations to be missing (e.g. missing at random or not) [112]:
it is recommended to be aware of such assumptions before applying them .

Categorical variables. It may be convenient to treat categorical variables, specif-
ically in situations when they may take a very large number of values (e.g.
names of retailers in a business intelligence application). Two common ways
to deal with are: i) replace them with dummy variables encoding the dif-
ferent values in binary terms (e.g. K bits for K categories) ii) replace each
category with numerical values informative about the conditional distribution
of the target given such category: for instance, in regression (binary clas-
sification) we could replace a category x = ”black” with an estimation of
E[y|x = ”black”] (Prob {y = 1|x = ”black”}).

Feature selection. The feature selection problem consists in selecting a relevant
subset of input variables in order to maximise the performance of the learn-
ing machine. This approach is useful if there are inputs that carry only a
little useful information or are strongly correlated. In these situations a di-
mensionality reduction improves the performance reducing the variance of the
estimator at the cost of a slight increase in the bias.

Several techniques exist for feature selection, such as conventional methods
in linear statistical analysis [55], principal component analysis [124] and the
general wrapper approach [106]. For more details, we refer the reader to
Chapter 10.

Outliers removal. Outliers are unusual data values that are not consistent with
most of the observations. Commonly, outliers are due to wrong measurement
procedures, storage errors and coding malfunctioning. There are two common
strategies to deal with outliers: the first is performed at the preprocessing
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stage [67] and consists in their detection and consequent removal, the second
is to delay their treatment at the model identification level by adopting robust
methodologies [95] that are by design insensitive to outliers.

Other common preprocessing operations are pre-filtering to remove noise effects,
anti-aliasing to deal with sampled signals, variable scaling to standardise all vari-
ables to have a zero mean and a unity variance 1, compensation of nonlinearities or
the integration of some domain-specific information to reduce the distorting effects
of measurable disturbances.

6.5 The dataset

The outcome of the pre-processing phase is a dataset in a tabular numeric form
where each row represents a particular observation (also called instance, example
or data point), and each column a descriptive variable (also called feature, attribute
or covariate). We denote the dataset

DN = {z1, z2, . . . , zN}

where N is the number of examples, n is the number of features, the ith example is
an input/output pair zi = 〈xi, yi〉, i = 1, . . . , N , xi is a [n × 1] input vector and yi
is a scalar output.

Note that hereafter, for the sake of simplicity, we will restrict ourselves to a
regression setting. We will assume the input/output data to be i.i.d. generated by
the following stochastic dependency:

y = f(x) + w, (6.5.1)

where E[w] = 0 and σ2
w is the noise variance.

The noise term w is supposed to lump together all the unmeasured contributions
to the variability of y, like, for instance, missing or non-observable variables. There
are two main assumptions underlying Equation (6.5.1). The first is that the noise is
independent of the input and has a constant variance. This assumption also called
homeskedasticity in econometrics is typically made in machine learning because of
the primary focus on the dependency f and the lack of effective methodologies to
assess it a priori in nonlinear and high dimensional settings. The reader should
be aware, however, that heteroskedastic configurations may have a strong impact
on the final model accuracy and that some a priori output variable transformation
and/or a posteriori assessment is always recommended (e.g. study of the residual
distribution after fitting). The second assumption is that noise enters additively
to the output. Sometimes the measurements of the inputs to the system may also
be noise corrupted; in system identification literature, this is what is called the
error-in-variable configuration [9]. As far as this problem is concerned, we adopt
the pragmatic approach proposed by Ljung [113], which assumes that the measured
input values are the actual inputs and that their deviations from the correct values
propagate through f and lump into the noise w.

In the following, we will refer to the set of vectors xi and yi through the following
matrices:

1. the input matrix X of dimension [N × n] whose ith row is the vector xTi ,

2. the output vector Y of dimension [N × 1] whose ith component is the scalar
yi.

1This can be easily done with numeric inputs by the R command scale
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6.6 Parametric identification

Assume that a class of hypotheses h(·, α) with α ∈ Λ has been fixed. The problem of
parametric identification from a finite set of data consists in seeking the hypothesis
whose vector of parameters αN ∈ Λ minimises the loss function

Remp(α) =
1

N

N∑
i=1

L (yi, h(xi, α)) (6.6.2)

This phase of the learning procedure requires the resolution of the optimisation
task (5.2.7). In this section, we will review some of the most common algorithms
that address the problem of parametric identification in linear and nonlinear cases.

To make the notation more readable, henceforth we will define the error function

J(α) = Remp(α)

and we will formulate the optimisation problem (5.2.7) as

αN = arg min
α∈Λ

J(α). (6.6.3)

Also, we will use the term model as a synonymous of hypothesis.

6.6.1 Error functions

The choice of an optimisation algorithm is strictly dependent on the form of the
error function J(α). The function J(α) is directly determined by two factors

1. the form of the model h(·, α) with α ∈ Λ,

2. the loss function L(y, h(x, α)) for a generic x.

As far as the cost function is concerned, there are many possible choices depending
on the type of data analysis problem. In regression problems, the goal is to model
the conditional distribution of the output variable conditioned on the input vari-
able (see Section 5.4) whose mean is the value minimising the mean squared error
(Equation 2.11.33). This motivates the use of a quadratic function

L (y, h(x, α)) = (y − h(x, α))
2

(6.6.4)

which gives to J(α) the form of a sum-of-squares.
For classification problems, the goal is to model the posterior probabilities of

class membership, again conditioned on the input variables. Although the sum-of-
squares J can also be used for classification, there are more appropriate error func-
tions to be considered [56]. The most used is cross-entropy which derives from the
adoption of the maximum-likelihood principle (Section 3.8) for supervised classifica-
tion. Consider a classification problem where the output variable y takes values in
the set {c1, . . . , cK} and Prob {y = cj |x} , j = 1, . . . ,K is the conditional probabil-

ity. Given a training dataset and a set of parametric models P̂j(x, α), j = 1, . . . ,K
of the conditional distribution, the classification problem boils down to the minimi-
sation of the quantity

J(α) = −
N∑
i=1

log P̂yi(xi, α) (6.6.5)

Note that the models P̂j(x, α), j = 1, . . . ,K must satisfy two important constraints:

1. P̂j(x, α) > 0
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2.
∑K
j=1 P̂j(x, α) = 1

In the case of 0/1 binary classification problem, the cross-entropy is written as

J(α) = −
N∑
i=1

[yi log P̂1(xi, α) + (1− yi) log(1− P̂1(xi, α))] (6.6.6)

where P̂1(xi, α) is the estimation of the conditional probability of the class y = 1.

Since this chapter will focus mainly on regression problems, we will limit to
consider the case of a quadratic loss function.

6.6.2 Parameter estimation

6.6.2.1 The linear least-squares method

The parametric identification of a linear model

h(x, α) = αTx

is obtained by minimising a quadratic function J(α) by the well-known linear least-
squares method. In Chapter 7 we will see in detail the linear least-squares minimisa-
tion. Here we just report that, in the case of non-singularity of the matrix (XTX),
J(α) has a single global minimum in

αN = (XTX)−1XTY (6.6.7)

6.6.2.2 Iterative search methods

In general cases, when either the model is not linear, or the cost function is not
quadratic, J(α) can be a highly nonlinear function of the parameters α, and there
may exist many minima, all of which satisfy

∇J = 0 (6.6.8)

where ∇ denotes the gradient of J in parameter space. We will define as stationary
points all the points which satisfy condition (6.6.8). They include local maxima,
saddle points and minima. The minimum for which the value of the error function
is the smallest is called the global minimum, while other minima are called local
minima. As a consequence of the non-linearity of the error function J(α), it is not
in general possible to find closed-form solutions for the minima. For more details
on multivariate optimisation, we refer the reader to [2].

We will consider iterative algorithms, which involve a search through the pa-
rameter space consisting of a succession of steps of the form

α(τ+1) = α(τ) + ∆α(τ) (6.6.9)

where τ labels the iteration step.

Iterative algorithms differ for the choice of the increment ∆α(τ).

In the following, we will present some gradient-based and non-gradient-based it-
erative algorithms. Note that each algorithm has a preferred domain of applications
and that it is not possible, or at least fair, to recommend a single universal opti-
misation algorithm. We consider it much more interesting to highlight the relative
advantages and limitations of the different approaches.
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6.6.2.3 Gradient-based methods

In some cases, the analytic form of the error function makes it possible to evaluate
the gradient of the cost function J with respect to the parameters α, increasing the
rate of convergence of the iterative algorithm. Some examples of gradient-based
methods are reported in the following sections. Those methods require the deriva-
tives of the cost function with respect to the model parameters. Such computation
is not always easy in complex nonlinear mappings, but it has been recently facil-
itated by the appearance of automatic differentiation functionalities [18], like the
ones made available by libraries like TensorFlow or PyTorch.

6.6.2.4 Gradient descent

It is the simplest of the gradient-based optimisation algorithms, also known as the
steepest descent. This algorithm starts with some initial guess α(0) for the parameter
vector (often chosen at random). Then, it iteratively updates the parameter vector
such that, at the τ th step, the estimate is updated by moving a short distance in
the direction of the negative gradient evaluated in α(τ):

∆α(τ) = −µ∇J(α(τ)) (6.6.10)

where µ is called the learning rate. The updates are repeatedly executed until
convergence, i.e. when further improvements are considered to be too small to be
useful.

The gradient descent method is known to be a very inefficient procedure. One
drawback is the need for a suitable value of the learning rate µ. In fact, a decrease
of the cost function is guaranteed by (6.6.10) only for learning rates of infinitesimal
size: if its value is sufficiently small, it is expected that the value of J(α(τ)) will
decrease at each successive step, eventually leading to a parameter vector at which
the condition (6.6.8) is satisfied. Too small learning rates may considerably delay
the convergence, while too large rates might result in numerical overflows.

Further, at most points in the parameter space, the local gradient does not point
directly towards the minimum: gradient descent then needs many small steps to
reach a stationarity point.

Example of gradient-based univariate optimisation

Let us consider the univariate function

J(α) = α2 − 2α+ 3

visualised in Figure 6.1. By running the script Learning/optim.R you can visualise
the gradient search of the minimum of the function. Note that the gradient is
obtained by computing analytically the derivative

J ′(α) = 2α− 2

We invite the reader to assess the impact of the learning rate µ on the conver-
gence of the minimisation process.

The function
J(α) = α4/4− α”/3− α2 + 2

with two local minima is shown in Function 6.2 and minimised in the script Learning/optim2.R.
We invite the reader to assess the impact of the initial value α(0) of the solution on
the result of the minimisation process.

•
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Figure 6.1: Gradient-based minimisation of the function J(α) = α2 − 2α + 3 with
a single global minimum.

Figure 6.2: Gradient-based minimisation of the function J(α) = α4/4−α”/3−α2+2.
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Figure 6.3: Contour plot: gradient-based minimisation of the bivariate function
J(α) = α2

1 + α2
2 − 2α1 − 2α2 + 6 with a single global minimum.

Example of gradient-based bivariate optimisation

Let us consider the bivariate function

J(α) = α2
1 + α2

2 − 2α1 − 2α2 + 6

whose contour plot is visualised in Figure 6.3. By running the script Learning/optim2D.R
you can visualise the gradient search of the minimum of the function. Note that
the gradient is obtained by computing analytically the gradient vector

∇J(α) = [2α1 − 2, 2α2 − 2]T

We invite the reader to assess the impact of the learning rate µ on the conver-
gence of the minimisation process.

The contour plot of the function

J(α) =
α4

1 + α4
2

4
− α3

1 + α3
2

3
− α2

1 − α2
2 + 4

with three local minima is shown in Function 6.4 and minimised in the script
Learning/optim2D2.R. We invite the reader to assess the impact of the initial
value α(0) of the solution on the result of the minimisation process.

•

In alternative to the simplest gradient descent, there are many iterative methods
in the literature, as the momentum-based method [135], the enhanced gradient
descent method [165] and the conjugate gradients techniques [137], which make
implicit use of second-order derivatives of the error function.

In the following section, we present instead a class of algorithms that make
explicit use of second-order information.

6.6.2.5 The Newton method

The Newton’s method is a well-known example in optimisation literature. It is an
iterative algorithm which uses at the τ th step a local quadratic approximation in
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Figure 6.4: Contour plot: gradient-based minimisation of the function J(α) =
α4

1+α4
2

4 − α3
1+α3

2

3 − α2
1 − α2

2 + 4.

the neighbourhood of α(τ)

Ĵ(α) = J
(
α(τ)

)
+
(
α− α(τ)

)T
∇J

(
α(τ)

)
+

1

2

(
α− α(τ)

)T
H(α(τ))

(
α− α(τ)

)
(6.6.11)

where H(α(τ)) is the Hessian matrix of J(α) computed in α(τ) and

H(α) =


∂2J
∂α2

1

∂2J
∂α1∂α2

. . . ∂2J
∂α1∂αp

...
...

. . .
...

∂2J
∂αp∂α1

∂2J
∂αp∂α2

. . . ∂2J
∂α2

p


is a [p, p] square matrix of second-order partial derivatives if α ∈ Rp.

The minimum of (6.6.11) satisfies

αmin = α(τ) −H−1(α(τ))∇J
(
α(τ)

)
(6.6.12)

where the vector H−1(α(τ))∇J
(
α(τ)

)
is denoted as the Newton direction or the

Newton step and forms the basis for the iterative strategy

α(τ+1) = α(τ) −H−1∇J
(
α(τ)

)
(6.6.13)

There are several difficulties with such an approach, mainly related to the pro-
hibitive computational demand. Alternative approaches, known as quasi-Newton or
variable metric methods, are based on (6.6.12) but instead of calculating the Hes-
sian directly, and then evaluating its inverse, they build up an approximation to the
inverse Hessian. The two most commonly used update formulae are the Davidson-
Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) proce-
dures [115].

6.6.2.6 The Levenberg-Marquardt algorithm

This algorithm is designed specifically for minimising a sum-of-squares error func-
tion

J(α) =
1

2

N∑
i=1

L (yi, h(xi, α)) =
1

2

N∑
i=1

e2
i =

1

2
‖e‖2 (6.6.14)
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where ei is the error for the ith training case, e is the [N × 1] vector of errors and
‖ · ‖ is a 2-norm. Let us consider an iterative step in the parameter space

α(τ) → α(τ+1) (6.6.15)

If the quantity (6.6.15) is sufficiently small, the error vector e can ban expanded in
a first-order Taylor series form:

e
(
α(τ+1)

)
= e

(
α(τ)

)
+ E

(
α(τ+1) − α(τ)

)
(6.6.16)

where the generic element of the matrix E is in the form

Eij =
∂ei
∂αj

(6.6.17)

and αj is the jth element of the vector α. The error function can then be approxi-
mated by

J
(
α(τ+1)

)
=

1

2

∥∥∥e(α(τ)
)

+ E
(
α(τ+1) − α(τ)

)∥∥∥2

(6.6.18)

If we minimise with respect to α(τ+1) we obtain:

α(τ+1) = α(τ) − (ETE)−1ET e(α(τ)) (6.6.19)

where (ETE)−1ET is the pseudo-inverse of the matrix E. For the sum-of-squares
error function (6.6.14), the elements of the Hessian take the form

Hjk =
∂2E

∂αjαk
=

N∑
i=1

{
∂ei
∂αj

∂ei
∂αk

+ ei
∂2ei
∂αjαk

}
(6.6.20)

Neglecting the second term, the Hessian can be written in the form

H ' ETE (6.6.21)

This relation is exact in the case of linear models, while in the case of nonlinearities
it represents an approximation that holds exactly only at the global minimum of the
function [25]. The update formula (6.6.19) could be used as the step of an iterative
algorithm. However, the problem with such an approach could be a too large step
size returned by (6.6.19), making the linear approximation no longer valid.

The idea of the Levenberg-Marquardt algorithm is to use the iterative step, at
the same time trying to keep the step size small so as to guarantee the validity of
the linear approximation. This is achieved by modifying the error function in the
form

Jlm =
1

2

∥∥∥e(α(τ)) + E(α(τ+1) − α(τ))
∥∥∥2

+ λ
∥∥∥α(τ+1) − α(τ)

∥∥∥2

(6.6.22)

where λ is a parameter that governs the step size. The minimisation of the error
function (6.6.22) ensures, at the same time, the minimisation of the sum-of-square
cost and a small step size. Minimising (6.6.22) with respect to α(τ+1) we obtain

α(τ+1) = α(τ) − (ETE + λI)−1ET e(α(τ)) (6.6.23)

where I is the unit matrix. For very small values of λ we have the Newton formula,
while for large values of λ we recover the standard gradient descent.

A common approach for setting λ is to begin with some arbitrary low value (e.g.
λ = 0.1) and at each step (6.6.23) check the change in J . If J decreases, the new
parameter is retained, λ is decreased (e.g. by a factor of 10), and the process is
repeated. Otherwise, if J increased after the step (6.6.23), the old parameter is
restored, λ decreased, and a new step performed. The procedure is iterated until a
decrease in J is obtained [25].
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6.6.3 Online gradient-based algorithms

The algorithms above are called batch since they compute the gradient of the quan-
tity (6.6.2) over the entire training set. In the case of very large datasets or se-
quential settings, this procedure is not recommended since it requires the storage
of the entire dataset. For this reason, online modification of the batch algorithms
have been proposed in the literature. The idea consists of replacing the gradient
computed on the entire training set with a gradient computed on the basis of a
single data point

α(τ+1) = α(τ) − µ(τ)∇αJ (τ)(α(τ)) (6.6.24)

where
J (τ)(α(τ)) = (yτ − h(xτ , α

(τ)))2

and zτ = 〈yτ , xτ 〉 the input/output observation at the τth instant.
The underlying assumption is that the training error obtained by replacing the

average with a single term will not perturb the average behaviour of the algorithm.
Note also that the dynamics of µ(τ) plays an important role in the convergence.

This algorithm can be easily used in an adaptive online setting where no training
set needs to be stored, and observations are processed immediately to improve
performance. A linear version of the iteration (6.6.24) is the Recursive Least Squares
regression algorithm presented in Section 7.1.20. Note also that the earliest machine
learning algorithms were based on sequential gradient-based minimisation. Well-
known examples are Adaline and LMS [169].

6.6.4 Alternatives to gradient-based methods

Virtually no gradient-based method is guaranteed to find the global optimum of a
complex nonlinear error function. Additionally, all descent methods are determin-
istic in the sense that they inevitably converge to the nearest local minimum. As a
consequence, the way a deterministic method is initialised is decisive for the final
result.

Further, in many practical situations, the gradient-based computation is time-
consuming or extremely difficult due to the complexity of the objective function.
For these reasons, a lot of derivative-free and stochastic alternatives to gradient-
based methods have been explored in the literature. We will limit to cite the most
common solutions:

Random search methods. They are iterative methods that are primarily used
for continuous optimisation problems. Random search methods explore the
parameter space of the error function sequentially in a random fashion to find
the global minimum. Their strength lies mainly in their simplicity, which
makes these methods easily understood and conveniently customised for spe-
cific applications. Moreover, it has been demonstrated that they converge
to the global optimum with probability one on a compact set. However, the
theoretical result of convergence to the minimum is not really important here
since the optimisation process could take a prohibitively long time.

Genetic algorithms. They are derivative-free stochastic optimisation methods
based loosely on the concepts of natural selection and evolutionary processes
[77]. Important properties are the strong parallelism and the possibility to
be applied to both continuous and discrete optimisation problems. Typically,
Genetic Algorithms (GA) encode each parameter solution into a binary bit
string (chromosome) and associate each solution with a fitness value. GAs
usually keep a set of solutions (population) which is repeatedly evolved toward
a better overall fitness value. In each generation, the GA constructs a new
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population using genetic operators such as crossover or mutation; members
with higher fitness values are more likely to survive and to participate in fu-
ture operations. After a number of generations, the population is expected to
contain members with better fitness values and to converge, under particular
conditions, to the optimum.

Simulated annealing. It is another derivative-free method suitable for continu-
ous and discrete optimisation problems. In Simulated Annealing (SA), the
value of the cost function J(α) to be minimised is put in analogy to the en-
ergy in a thermodynamic system at a certain temperature T [104]. At high
temperatures T (τ), the SA technique allows function evaluations at points far
away from α(τ), and it is likely to accept a new parameter value with a higher
function value. The decision whether to accept or reject a new parameter
value α(τ+1) is based on the value of an acceptance function, generally shaped
as the Boltzmann probability distribution. At low temperatures, SA evaluates
the objective function at more local points, and the likelihood of accepting
a new point with a higher cost is much lower. An annealing schedule regu-
lates how rapidly the temperature T goes from high values to low values as a
function of time or iteration counts.

R script

The script Learning/grad.R compares four ways of fitting the parameters of a
linear model:

1. least-squares

2. random search

3. gradient-based search

4. Levenberg-Marquardt

It is interesting to compare the number of steps required to attain a solution close
to the optimal one: one for least-squares, more than one thousands for the random
search, more than twenty for gradient-based and two for the Levenberg-Marquardt
method.

•

6.7 Regularisation

Parameter identification relies on Empirical Risk Minimisation to return an estima-
tor in supervised learning problems. In Section 5.6, we stressed that the accuracy
of such an estimator depends on the bias/variance trade-off, which is typically con-
trolled by capacity/related hyper-parameters. There is, however, another important
strategy, called regularisation, to control the bias/variance trade-off by constraining
the ERM problem. The rationale consists then in restricting the set of possible so-
lutions by transforming the unconstrained problem (6.6.3) into a constrained one.
An example of constrained minimisation is

αN = arg min
α∈Λ

J(α) + λ‖α‖ (6.7.25)

where λ > 0 is the regularisation parameter. By adding the squared norm term,
solutions with large values of components of α are penalised unless they play a
major role in the J(α) term. An alternative version is

αN = arg min
α∈Λ

J(α) + λS(h(·, α)) (6.7.26)
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where the term S penalises non-smooth wiggling hypothesis functions. An example
is

S(α) =

∫
(h”(x, α))2dx

where the integral of the second derivative is a measure of lack of smoothness.
Regularisation is a well-known strategy in numerical analysis and optimisation

to avoid or limit the ill-conditioning of the solution. In estimation, regularisation
is an additional way to control the variance of the estimator resulting from the
optimisation procedure. This is particularly effective in learning problems with a
number of observations comparable or even smaller than the input dimension.

Note, however, that variance reduction occurs at the cost of both increased bias
and additional complexity of the optimisation problem. For instance, according
to the nature of the regularisation and the nonlinearity of the hypothesis function
we could lose some interesting properties like the closed-form of the solution. In
Chapter10, we will show some examples of regularisation to address the curse of
dimensionality problem.

6.8 Structural identification

Once a class of models Λ is given, the identification procedure, described above,
returns a model h(, ·, αN ) defined by the set of parameters αN ∈ Λ .

The choice of an appropriate class or model structure [113] is, however, the most
crucial aspect for a successful modelling application. The procedure of selecting the
best model structure is called structural identification. The structure of a model
is made of a series of features that influence the generalisation power of the model
itself. Among others, there are:

• The type of the model. We can distinguish, for example, between nonlinear
and linear models, between physically based and black box representations,
between continuous-time or discrete-time systems.

• The size of the model. This is related to features like the number of inputs
(regressors), the number of parameters, the degree of the polynomials in a
polynomial model, the number of neurons in a neural network, the number of
nodes in a classification tree, etc.

In general terms, structural identification requires (i) a procedure for proposing
a series of alternative model structures, (ii) a method for assessing each of these
alternatives and (iii) a technique for choosing among the available candidates.

We denote the first issue as model generation. Some techniques for obtaining
different candidates to the final model structure are presented in Section 6.8.1.

The second issue concerns the important problem of model validation, and will
be extensively dealt with in Section 6.8.2.

Once models have been generated and validated, the last step is the model
selection, which will be discussed in Section 6.8.3

It is important to remark that a selected model structure should never be ac-
cepted as a final and true description of the phenomenon. Rather, it should be
regarded as a good enough description, given the available dataset.

6.8.1 Model generation

The goal of the model generation procedure is to generate a set of candidate model
structures among which the best one is to be selected. The more this procedure
is effective, the easier will be the selection of a powerful structure at the end of
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the whole identification. Traditionally there have been a number of popular ways
to search through a large collection of model structures. Maron and Moore [118]
distinguish between two main methods of model generation:

Brute force. This is the exhaustive approach. Every possible model structure is
generated in order to be evaluated.

Consider, for instance, the problem of selecting the best structure in a 3-
layer Feed Forward Neural Network architecture. The brute force approach
consists of enumerating all the possible configurations in terms of the number
of neurons.

The exhaustive algorithm runs in a time that is generally unacceptably slow
for complex architectures with a large number of structural parameters. The
only advantage, however, is that this method is guaranteed to return the best
learner according to a specified assessment measure.

Search methods. These methods treat the collection of models as a continuous
and differentiable surface. They start at some point on the surface and search
for the model structure that corresponds to the minimum of the generalisation
error until some stop condition is met. This procedure is much faster than
brute force since it does not need to explore all the space. It only needs to
validate those models that are on the search path. Gradient-based techniques
and/or non-gradient based methods can be used for the search in the model
space. Besides the well-known problem related to local minima in the gradi-
ent base case, a more serious issue derives from the structure of the model
selection procedure. At every step of the search algorithm, we need to find
a collection of models that are near or related to the current model. Both
gradient-based and non-gradient-based techniques require some metric in the
search space. This implies a notion of model distance, difficult to define in a
general model selection problem. Examples of search methods in model gen-
eration are the growing and pruning techniques in Neural Networks structural
identification [19].

6.8.2 Validation

The output of the model generation procedure is a set of model structures Λs,
s = 1, . . . , S. Once the parametric identification is performed on each of these model
structures, we have a set of models h(·, αsN ) identified according to the Empirical
Risk Minimisation principle.

Now, the prediction quality of each one of the model structures Λs, s = 1, . . . , S,
has to be assessed on the basis of the available data. In principle, the assessment
procedure, known as model validation, could measure the goodness of a structure
in many different ways: how the model relates to our a priori knowledge, how the
model is easy to be used, to be implemented or to be interpreted. In this book, as
stated in the introduction, we will focus only on criteria of accuracy, neglecting any
other criterion of quality.

In the following, we will present the most common techniques to assess a model
on the basis of a finite set of observations.

6.8.2.1 Testing

An obvious way to assess the quality of a learned model is by using a testing sequence

Dts = (〈xN+1, yN+1〉, . . . , 〈xN+Nts , yN+Nts〉) (6.8.27)



170 CHAPTER 6. THE MACHINE LEARNING PROCEDURE

that is a sequence of i.i.d. pairs, independent of DN and distributed according
to the probability distribution P (x, y) defined in (5.2.2). The testing estimator is
defined by the sample mean

R̂ts(α
s
N ) =

1

Nts

N+Nts∑
j=N+1

(yj − h(xj , α
s
N ))

2
(6.8.28)

This estimator is clearly unbiased in the sense that

EDts
[R̂ts(α

s
N )] = R(αsN ) (6.8.29)

When the number of available examples is sufficiently high, the testing technique
is an effective validation technique at a low computational cost. A serious problem
concerning the practical applicability of this estimate is that it requires a large,
independent testing sequence. In practice, unfortunately, an additional set of in-
put/output observations is rarely available.

6.8.2.2 Holdout

The holdout method, sometimes called test sample estimation, partitions the data
DN into two mutually exclusive subsets, the training set Dtr and the holdout or
test set DNts . It is common to design 2/3 of the data as training set and the
remaining 1/3 as test set. However, when the training set has a reduced number of
cases, the method can present a series of shortcomings, mainly due to the strong
dependence of the prediction accuracy on the repartition of the data between the
training and validation set. Assuming that the error R(αNtr ) decreases as more
cases are inserted in the training set, the holdout method is a pessimistic estimator
since only a reduced amount of data is used for training. The larger the number
of points used for test set, the higher the bias of the estimate αNtr ; at the same
time, fewer test points implies a larger confidence interval of the estimate of the
generalisation error.

6.8.2.3 Cross-validation in practice

In Chapter 5 we focused on the theoretical properties of cross-validation and boot-
strap. Here we will see some more practical details on these validation proce-
dures, commonly grouped under the name of computer-intensive statistical methods
(CISM) [92].

Consider a learning problem with a training set of size N .

In l-fold cross-validation the available points are randomly divided into l mutu-
ally exclusive test partitions of approximately equal size. The examples not found
in each test partition are independently used for selecting the hypothesis, which
will be tested on the partition itself (Fig. 5.16). The average error over all the l
partitions is the cross-validated error rate.

A special case is the leave-one-out (l-o-o). For a given algorithm and a dataset
DN , an hypothesis is generated using N − 1 observations and tested on the single
remaining one. In leave-one-out, cross-validation is repeated l = N times, each data
point is used as a test case, and each time nearly all the examples are used to design
a hypothesis. The error estimate is the average over the N repetitions.

In a general nonlinear case, leave-one-out is computationally quite expensive.
This is not true for a linear model where the PRESS l-o-o statistic is computed as
a by-product of the least-squares regression (Section 7.1.17).
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6.8.2.4 Bootstrap in practice

Bootstrap is a resampling technique that samples the training set with replacement
to return a nonparametric estimate of the desired statistic.

There are many bootstrap estimators, but two are the most commonly used in
model validation: the E0 and the E632 bootstrap.

The E0 bootstrap estimator, denoted by Ĝb in (5.9.57), samples with replace-
ment from the original training set B bootstrap training sets, each consisting of N
cases. The cases not found in the training group form the test groups. The average
of error rate on the B test groups is the E0 estimate of the generalisation error.

The rationale for the E632 technique is given by Efron [59]. He argues that while
the resubstitution error Remp is the error rate for patterns that are “zero” distance
from the training set, patterns contributing to the E0 estimate can be considered as
too far out from the training set. Since the asymptotic probability that a pattern
will not be included in a bootstrap sample is

(1− 1/N)N ≈ e−1 ≈ 0.368

the weighted average of Remp and E0 should involve patterns at the “right” distance
from the training set in estimating the error rate:

ĜE632 = 0.368 ∗Remp + 0.632 ∗ Ĝbs (6.8.30)

where the quantity Ĝbs is defined in (5.9.57). The choice of B is not critical as long
as it exceeds 100. Efron [59] suggests, however, that B need not be greater than
200.

There a lot of experimental results on comparison between cross-validation and
bootstrap methods for assessing models [96], [105]. In general terms, only some
guidelines can be given to the practitioner [168]:

• For training set size greater than 100, use cross-validation; either 10-fold cross-
validation or leave-one-out is acceptable.

• For training set sizes less than 100, use leave-one-out.

• For very small training sets (N < 50), in addition to the leave-one-out esti-
mator, the ĜE632 and the Ĝboot estimates may be useful measures.

6.8.2.5 Complexity based criteria

In conventional statistics, various criteria have been developed, often in the context
of linear models, for assessing the generalisation performance of the learned hypoth-
esis without the use of further validation data. Such criteria aim to understand the
relationship between the generalisation performance and the training error. Gen-
erally, they take the form of a prediction error, which consists of the sum of two
terms

ĜPE = Remp + complexity term (6.8.31)

where the complexity (or capacity) term represents a penalty that grows as the
number of free parameters in the model grows.

This expression quantifies the qualitative consideration that simple models re-
turn high empirical risk with a reduced complexity term while complex models have
a low empirical risk thanks to the high number of parameters. The minimum for
the criterion (6.8.31) represents a trade-off between performance on the training set
and complexity.
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Let us consider a quadratic loss function and the quantity

M̂ISEemp = Remp(αN ) = min
α

∑N
i=1(yi − h(xi, α))2

N

If the input/output relation is linear and n is the number of input variables, well-
known examples of complexity based criteria are:

1. the Final Prediction Error (FPE) (see Section 7.1.16.2 and [6])

FPE = M̂ISEemp
1 + p/N

1− p/N
(6.8.32)

with p = n+ 1,

2. the Predicted Squared Error (PSE) (see Section 7.1.16.2)

PSE = M̂ISEemp + 2σ̂2
w

p

N
(6.8.33)

where σ̂2
w is an estimate of the noise variance. This quantity is also known as

the Mallows’ Cp statistics [117]

3. the Generalised Cross-Validation (GCV) [46]

GCV = M̂ISEemp
1

(1− p
N )2

(6.8.34)

A comparative analysis of these different measures is reported in [15].
These estimates are computed by assuming a linear model underlying the data.

In neural network literature another well-known form of complexity-based criterion
is the weight decay technique

U(λ, α,DN ) =

N∑
i=1

(yi − h(xi, α))2 + λg(α) (6.8.35)

where the second term penalises either small, medium or large weights of the neurons
depending on the form of g(·) and λ is called the regularisation constant. Two
common examples of weight decay functions are the ridge regression form g(α) =

αTα which penalises large weights, and the Rumelhart form g(α) = αTα
α0+αTα

which
penalises weights of intermediate values near α0.

Several roughness penalties like∫
[h”(x)]2dx

have been proposed too. Their aim is penalising hypothesis functions that vary too
rapidly by controlling large values of the second derivative of h.

Two other state-of-the-art methods for model validation and selection are the
Akaike (AIC) Infomation Criterion [38] and the Minimum Description Length (MDL)
principle [141]. The AIC criterion returns the model maximising a penalised para-
metric log-likelihood cost function balancing good fit (high log-likelihood) and com-
plexity (length of the parameter vector). The MDL method proposes to choose the
model which induces the shortest description for the data available. Rissanen and
Barron [15] have each shown a qualitative similarity between this principle and the
complexity based approaches. For further details refer to the cited works.
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6.8.2.6 A comparison of validation methods

Computer intensive statistical methods are relatively new and must be measured
against more established statistical methods, as the complexity based criteria. In
the following we summarise some practical arguments on behalf of one or the other
method. The benefits of a CISM method are:

• All the assumptions of prior knowledge of the process underlying the data are
discarded.

• The validation technique replaces theoretical analysis by computation.

• Results are generally much easier to grasp for non-theorist.

• No assumption on the statistical properties of noise is required.

• They return an estimate of the model precision and an interval of confidence.

Arguments on behalf of complexity criteria are:

• The whole dataset can be used for estimating the prediction performance and
no partitioning is required.

• Results valid for linear models remain valid to the extent that the nonlin-
ear model can be approximated by some first-order Taylor expansion in the
parameters.

Some results in literature show the relation existing between resampling and com-
plexity based methods. For example, an asymptotic relation between a kind of
cross-validation and the Akaike’s measure was derived by Stone [153], under the
assumptions that the real model α∗ is contained in the class of hypothesis Λ and
that there is a unique minimum for the log-likelihood.

Here we will make the assumption that no a priori information about the correct
structure or the quasi-linearity of the process is available. This will lead us to con-
sider computer intensive methods as the preferred method to validate the learning
algorithms.

6.8.2.7 Residual diagnostic

Although the main focus of machine learning validation is estimating the magnitude
of the generalisation error, in statistical modeling it is common to assess the quality
of a model also with criteria related to the error distribution. This is the case of
residual diagnostic measures. The idea is simple: if we model the input/output
dependance with the relation (6.5.1) and we use a hypothesis h to approximate f ,
the quality of the learned hypothesis is related to the white noise nature of the
residuals. In other terms we expect that the residuals

wi = yi − ŷi = yi − h(xi, αN )

are i.i.d. realisation of a noise variable w with expected value E[w] = 0 and
constant variance. To check this hypothesis, several residual diagnostic tests have
been proposed in litterature [124]. The simplest check consists in plotting the
residuals wi vs. the predicted values ŷi. In case of reliable fit, a random pattern
around zero is expected. Alternative patterns (e.g. curvilinear trends, heterogenous
variance) would instead provide evidence of model limitations. More sophisticated
tests consist on regressing the residuals vs. the original inputs to check whether
some residual signal is still present. In this case a prediction accuracy better than
random would warn against the goodness of the learned model.

Though the use of diagnostics is warmly recommended and should be taken into
account all along the modeling process, in what follows we will limit to consider
model selection strategies which depend on the generalisation error.
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6.8.3 Model selection criteria

Model selection concerns the final choice of the model structure in the set that
has been proposed by the model generation and assessed by model validation. In
real problems, this choice is typically a subjective issue and is often the result of a
compromise between different factors, like the quantitative measures, the personal
experience of the designer and the effort required to implement a particular model
in practice.

Here we will reduce the subjectivity factors to zero, focusing only on a quan-
titative criterion of choice. This means that the structure selection procedure will
be based only on the indices returned by the methods of Section 6.8.2. We distin-
guish between two possible quantitative approaches: the winner-takes-all and the
combination of estimators approach.

6.8.3.1 The winner-takes-all approach

This approach chooses the model structure that minimises the generalisation error
according to one of the criteria described in Section 6.8.2.

Consider a set of candidate model structures Λs, s = 1, . . . , S, and an associated
measure Ĝ(Λs) which quantifies the generalisation error.

The winner-takes-all method simply picks the structure

s̄ = arg min Ĝ(Λs) (6.8.36)

that minimises the generalisation error. The model which is returned as final out-
come of the learning process is then h(·, αs̄N ).

From a practitioner perspective, it may be useful to make explicit the entire
winner-takes-all procedure in terms of pseudo-code . Here below you will find a
compact pseudo-code detailing the structural, parametric, validation and selection
steps in the case of a leave-one-out assessment .

1. for s = 1, . . . , S: (Structural loop)

• for j = 1, . . . , N

(a) Inner parametric identification (for l-o-o):

αsN−1 = arg min
α∈Λs

∑
i=1:N,i6=j

(yi − h(xi, α))2

(b) ej = yj − h(xj , α
s
N−1)

• M̂ISELOO(s) = 1
N

∑N
j=1 e

2
j

2. Model selection: s̄ = arg mins=1,...,S M̂ISELOO(s)

3. Final parametric identification:

αs̄N = arg minα∈Λs̃

∑N
i=1(yi − h(xi, α))2

4. The output prediction model is h(·, αs̄N )

6.8.3.2 The combination of estimators approach

The winner-takes-all approach is intuitively the approach which should work the
best. However, recent results in machine learning [134] show that the performance
of the final model can be improved not by choosing the model structure which is ex-
pected to predict the best but by creating a model whose output is the combination
of the output of models having different structures.
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The reason for that non/intuitive result is that in reality any chosen hypothesis
h(·, αN ) is only an estimate of the real target (Figure 5.15) and, like any estimate,
is affected by a bias and a variance term.

Section 3.10 presented some results on the combination of estimators. The
extension of these results to supervised learning is the idea which underlies the
first results in combination [17] and that has led later to more enhanced forms of
averaging different models.

Consider m different models h(·, αj) and assume they are unbiased and uncor-
related. By (3.10.35), (3.10.36) and (3.10.37) we have that the combined model
is

h(·) =

∑m
j=1

1
v̂j
h(·, αj)∑m

j=1
1
v̂j

(6.8.37)

where v̂j is an estimation of the variance of h(·, αj). This is an example of the
generalised ensemble method (GEM) [134].

More advanced applications of the combination principle to supervised learning
will be discussed in Chapter 9.

6.9 Partition of dataset in training, validation and
test

The main challenge of machine learning consists of using a finite size dataset for i)
learning several predictors, ii) assessing them, iii) selecting the most promising one
and finally iv) returning it together with a reliable estimate of its generalisation
error.

Section 5.9 discussed the need for avoiding correlation between training and
validation examples. While the training set is used for parametric identification, a
non-overlapping portion of the dataset (validation set) should be used to estimate
the generalisation error of model candidates.

The use of validation (or cross-validation) does not prevent, however, a risk of
overfitting inherent to the winner-take-all model selection. If we take the minimum
generalisation error Ĝ(Λs̄) in (6.8.36) as the generalisation error of the winning
model, we have an optimistic estimation again. This is known as selection bias, i.e.
the bias that occurs when we make a selection in a stochastic setting and due to
the fact the expectation of minimum is lower than the minimum of expectations
(Appendix D.12).

A nested cross-validation strategy [39] is recommended to avoid such bias. If
we have enough observations (i.e. large N), the strategy consists in randomly
partitioning (e.g. 50%, 25%, 25%) the labelled dataset into three parts: a training
set, a validation set, and a test set. The test portion is supposed to be used for
the unbiased assessment of the generalisation error of the model s̄ in (6.8.36). It is
important to use only this set to assess the generalisation accuracy of the chosen
model. For this reason, the test set should be carefully made inaccessible to the
learning process (and ideally forgotten) and considered only at the very end of the
data analysis. Any other use of the test-set during the analysis (e.g. before the final
assessment) would “contaminate” the procedure and make it irreversibly biased.

Selection bias

A Monte Carlo illustration of the selection bias effect in a univariate regression task
is proposed in the R script Learning/selectionbias.R. The script estimates the
generalisation errors of a constant model (h1), a linear model (h2) and a third model
which is nothing more than the winner-takes-all of the twos in terms of leave-one-
out validation. It appears that the winner-takes/all model is not better than the
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best between h1 and h2: in other terms it has a generalisation error larger than the
minimum between h1 and h2.

•

6.10 Evaluation of a regression model

Let us consider a test set of size Nts where Yts = {y1, . . . , yNts} is the target and
Ŷ = {ŷ1, . . . , ŷNts} is the prediction returned by the learner. The canonical way to
assess a regression model by using a testing set is to measure the mean-squared-
error (6.8.28) (MSE):

MSE =

∑Nts
i=1(yi − ŷi)2

Nts

Let us suppose that the test of a learning algorithm returns a mean-squared-
error of 0.4. Is that good or bad? Is that impressive and/or convincing? How may
we have a rapid and intuitive measure of the quality of a regression model?

A recommended way is to compare the learner to a baseline, e.g. the simplest
(or naive) predictor we could design. This is the rationale of the Normalised Mean-
Squared-Error measure which normalises the accuracy of the learner with respect
to the accuracy of the average predictor, i.e. the simplest predictor we could learn
from data. Then

NMSE =

∑Nts
i=1(yi − ŷi)2∑Nts
i=1(yi − ȳ)2

(6.10.38)

where

ȳ =

∑Nts
i=1 yi
Nts

(6.10.39)

is the prediction returned by an average predictor. NMSE is then the ratio between
the MSE of the learner and the MSE of the baseline naive predictor (6.10.39).

As for the MSE, the lower the NMSE the better. At the same time, we should
target a NMSE (significantly) lower than one, if we wish to claim that the complex
learning procedure is effective. NMSE values close to (yet smaller than) one are
either indicators of a bad learning design or, more probably, of a high noise to signal
ratio (e.g. large σ2

w in (6.5.1)) which makes any learning effort ineffective.
Our recommendation is always to measure the NMSE of a regression model

before making too enthusiastic claims about the success of the learning procedure.
A very small NMSE could be irrelevant if not significantly smaller than what we
could obtain by a simple naive predictor.

Another common way to assess the MSE of a predictor is to normalise it with
respect to the MSE of the same learning algorithm, yet trained on a randomly
shuffled version of the training set. For instance it is enough to shuffle the training
target to cancel any dependency between inputs and outputs. Again in this case
we expect that the NMSE is much lower than one. Otherwise any claim that our
prediction is better than a random one would be unfounded.

6.11 Evaluation of a binary classifier

The most popular measure of performance is error rate or misclassification rate,
i.e. the proportion of test examples misclassified by the rule. However, misclassifi-
cation error is not necessarily the most appropriate criterion in real settings since
it implicitly assumes that the costs of different types of misclassification are equal.
When there are only a few or a moderate number of classes, the confusion matrix is
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the most complete way of summarising the classifier performance. In the following,
we will focus on evaluating a binary classifier.

Suppose to use the classifier to make N test classifications and that among the
values to be predicted there are NP examples of class 1 and NN examples of class
0. The confusion matrix is

Negative (0) Positive (1)

Classified as negative TN FN N̂N
Classified as positive FP TP N̂P

NN NP N

where FP is the number of False Positives and FN is the number of False Negatives.
The confusion matrix contains all the relevant information to assess the general-
isation capability of a binary classifier. From its values it is possible to derive a
number of commonly used error rates or measures of accuracy. For instance, the
misclassification error rate is

ER =
FP + FN

N
(6.11.40)

6.11.1 Balanced Error Rate

In a setting where the two classes are not balanced the misclassification error
rate (6.11.40) can lead to a too optimistic interpretation of the rate of success.

For instance, if NP = 90 and NN = 10, a naive classifier returning always the
positive class would have a misclassification ER = 0.1 since FN = 0 and FP = 10.
This low value of misclassification gives a false sense of accuracy since humans tend
to associate a 50% error to random classifiers. This is true in balanced settings
while in an unbalanced setting (as the one above) this generalisation performance
may be obtained with a trivial classifier making no use of the input information.

In these cases, it is preferable to adopt the balanced error rate which is the
average of the errors on each class:

BER =
1

2

(
FP

TN + FP
+

FN
FN + TP

)
Note that in the example above BER= 0.5, normalising the misclassification error
rate to a value correctly interpretable by humans.

6.11.2 Specificity and sensitivity

In many research works on classification, it is common usage to assess the classifier
in terms of sensitivity and specificity.

Sensitivity is a synonymous of True Positive Rate (TPR)

SE = TPR =
TP

TP + FN
=
TP
NP

=
NP − FN

NP
= 1− FN

NP
, 0 ≤ SE ≤ 1 (6.11.41)

It is a quantity to be maximised, and it increases by reducing the number of
false negatives. Note that it is also often called the recall in information retrieval.

Specificity stands for the True Negative Rate (TNR)

SP = TNR =
TN

FP + TN
=
TN
NN

=
NN − FP
NN

= 1− FP
NN

, 0 ≤ SP ≤ 1

It is a quantity to be maximised and it increases by reducing the number of false
positive.
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In other terms, sensitivity is the proportion of positive examples classified as
positive while specificity is the proportion of negative examples classified as negative.

There exists a trade-off between these two quantities. This is the reason why
both quantities have to be calculated to have a thorough assessment of the classifier
accuracy. In fact, it is trivial to maximise one of those quantities at the detriment
of the other.

For instance, for a naive classifier who always returns 0 we have N̂P = 0,N̂N =
N , FP = 0, TN = NN . This means that a naive classifier may attain maximal
specificity (SP = 1) but at the cost of minimal sensitivity (SE = 0).

Analogously in the case of a naive classifier who always returns 1 we have N̂P =
N ,N̂N = 0, FN = 0, TP = NP , i.e. maximal sensitivity (SE = 1) but null specificity
(SP = 0).

6.11.3 Additional assessment quantities

Other commonly used quantities which can be derived by the confusion matrix are

• False Positive Rate:

FPR=1-SP = 1− TN
FP + TN

=
FP

FP + TN
=
FP
NN

, 0 ≤ FPR ≤ 1

It decreases by reducing the number of false positive.

• False Negative Rate:

FNR = 1-SE = 1− TP
TP + FN

=
FN

TP + FN
=
FN
NP

0 ≤ FNR ≤ 1

It decreases by reducing the number of false negatives.

• Positive Predictive value: the ratio (to be maximised)

PPV =
TP

TP + FP
=
TP

N̂P
, 0 ≤ PPV ≤ 1 (6.11.42)

This quantity is also called precision in information retrieval.

• Negative Predictive value: the ratio (to be maximised)

PNV =
TN

TN + FN
=
TN

N̂N
, 0 ≤ PNV ≤ 1

• False Discovery Rate: the ratio (to be minimised)

FDR =
FP

TP + FP
=
FP

N̂P
= 1− PPV, 0 ≤ FDR ≤ 1

6.11.4 Receiver Operating Characteristic curve

All the assessment measures discussed so far make the assumption that the classifier
returns a class for each test point. However, since most binary classifiers compute
an estimation of conditional probability, a class may be returned as the outcome
provided a threshold on the conditional probability. In other terms, the confusion
matrix, as well as its derived measured depends on a specific threshold. The choice
of a threshold is related to Type I error and Type II errors (Section 3.13) that we
are ready to accept in a stochastic setting.
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In order to avoid conditioning our assessment on a specific threshold, it is in-
teresting to assess the overall accuracy for all possible thresholds. This is possible
by plotting curves, like the Receiver Operating Characteristic (ROC) which plots
the true positive rate (i.e. sensitivity or power) against the false positive rate (1-
specificity) for different classification thresholds.

In other terms, ROC visualises the probability of detection vs. the probability
of false alarm. Different points on the curve correspond to different thresholds used
in the classifier.

The ideal ROC curves would follow the two axes. In practice, real-life classi-
fication rules produce ROC curves which lie between these two extremes. It can
be shown that a classifier with a ROC curve following the bissetrix line would be
useless. For each threshold, we would have TP /NP=FP /NN , i.e. the same propor-
tion of true positives and false positives. In other terms, this classifier would not
separate the classes at all.

A common way to summarise a ROC curve is to compute the area under the
curve (AUC). By measuring the AUC of different classifiers, we have a compact way
to compare classifiers without setting a specific threshold.

6.11.5 Precision-recall curves

Another commonly used curve to visualise the accuracy of a binary classifier is
the precision-recall (PR) curve. This curve shows the relation between preci-
sion (6.11.42) (probability that an example is positive given that it has been clas-
sified as positive) vs recall (6.11.41) (probability that an example is classified as
positive given that is positive).

Since precision is dependent on the a priori probability of the positive class, in
largely unbalanced problems (e.g. few positive classes like in fraud detection), the
PR curve is more informative than the AUC.

R script: visual assessment of a binary classifier

The R script Learning/roc.R illustrates the assessment of a binary classifier for a
task where x ∈ R, p(x|y = +) ∼ N (1, 1) and p(x|y = −) ∼ N (−1, 1). Suppose that
the classifier categorises the examples as positive if t >Th and negative if t <Th,
where Th∈ R is a threshold. Note that if Th= −∞, all the examples are classed
as positive: TN = FN = 0 which implies SE = TP

NP
= 1 and FPR = FP

FP+TN
= 1.

On the other way round, if Th= ∞, all the examples are classed as negative:
TP = FP = 0 which implies SE = 0 and FPR = 0.

By sweeping over all possible values of Th we obtain the ROC and the PR curves
in Figure 6.5. Each point on the ROC curve, associated to a specific threshold, has
an abscissa FPR = FP /NN and an ordinate TPR = TP /NP . Each point on the
PR curve, associated to a specific threshold, has an abscissa TPR = TP /NP and
an ordinate PR=TP/(TP + FP ).

•

Fraud detection example

Let us consider a fraud detection problem [49] with NP = 100 frauds out of
N = 2 · 106 transactions. Since one of the two classes (in this case the fraud)
is extremely rare, the binary classification setting is called unbalanced [48]. Un-
balanced classification settings are very common in real-world tasks (e.g. churn
detection, spam detection, predictive maintenance).

Suppose we want to compare two algorithms: the first returns 100 alerts, 90 of
which are frauds. Its confusion matrix is
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Figure 6.5: ROC and PR curves of a binary classifier.

Genuine (0) Fraudulent (1)
Classified as genuine 1, 999, 890 10 1, 999, 900

Classified as fraudulent 10 90 100
1, 999, 900 100 2 · 106

The second algorithm returns a much larger number of alerts (1000) 90 of which
are actual frauds. Its confusion matrix is then

Genuine (0) Fraudulent (1)
Classified as genuine 1, 998, 990 10 1, 999, 000

Classified as fraudulent 910 90 1000
1, 999, 900 100 2 · 106

Which of two algorithms is the best? In terms of TPR and FPR we have

1. TPR=TP /NP = 90/100 = 0.9, FPR= FP /NN = 10/1, 999, 900 = 0.00000500025

2. TPR=90/100 = 0.9, FPR=910/1, 999, 900 = 0.00045502275

The FPR difference between the two algorithms is then negligible. Nevertheless,
though the recalls of the two algorithms are almost identical, the first algorithm is
definitely better in terms of false positives (much higher precision):

1. A1: PR=TP /(TP + FP ) = 90/100 = 0.9, recall=0.9

2. A2: PR=90/1000 = 0.09, recall= 0.9

The example shows that, in strongly unbalanced settings, the performance of a
classification algorithm may be highly sensitive to the adopted cost function.

•

6.12 Multi-class problems

So far we limited to consider binary classification tasks. However, real-world clas-
sification tasks (e.g. in bioinformatics or image recognition) are often multi-class.
Some classification strategies (detailed in the following chapters) may be easily
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adapted to the multi-class setting, like the Naive Bayes (Section 8.2.3.1) or the
KNN classifier (Section 8.2.1.1).

Suppose, however, to have a binary classification strategy that we want to use
in a multi-class context. There are three main strategies to extend binary classifiers
to handle multi-class tasks y ∈ {c1, . . . , ck}.

1. One-versus-the rest (or one-versus-all, OVA): it builds for each class ck a
binary classifier that separates this class from the rest. To predict the class
of a query point q, the outputs of the k classifiers are considered. If there
is a unique class label which is consistent with the k predictions, the query
point is labelled with such a class. Otherwise, one of the k classes is selected
randomly.

2. Pairwise (or one-versus-one, OVO): it trains a classifier for each pair of classes,
requiring in total the independent learning of k(k−1)/2 binary classifiers. To
predict a query point class, the output of the k(k−1)/2 classifiers is calculated
and a majority vote is considered. If there is a class which receives the largest
number of votes, the query point is assigned to such a class. Otherwise each
tie is broken randomly.

3. Coding: it first encodes each class by a binary vector of size d, then it trains a
classifier for each component of the vector. The aggregation of the outputs of
the d classifiers returns an output word, i.e. a binary of size d. Given a query
q, the output word is compared against the codeword of each class, and the
class having the smallest Hamming distance (the number of disagreements)
to the output word is returned.

Suppose that we have a task with k = 8 output classes. According to the coding
strategy, dlog2 8e = 3 binary classifiers can be used to handle this problem.

ĉ1 ĉ2 ĉ3
c1 0 0 0
c2 0 0 1
c3 0 1 0
c4 0 1 1
c5 1 0 0
c6 1 0 1
c7 1 1 0
c8 1 1 1

The table columns denote the classifiers while the rows contain the coding of the
associated class. For instance, the ĉ3 classifier will i) encode the training points
labelled with the classes {c2, c4, c6, c8} as ones ii) encode all the remaining examples
as zeros and iii) learn the corresponding binary classifier.

Note that, though each strategy requires the learning of more than a single
classifier, the number of trained classifiers is not the same. Given k > 2 classes, the
number of classifiers trained for each method is mentioned here below.

• One-versus-the rest: k binary classifiers

• Pairwise: k(k − 1)/2 binary classifiers

• Coding: dlog2 ke binary classifiers where d·e denote the ceiling operator.
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Figure 6.6: From the phenomenon to the predictive model: overview of the steps
constituting the modelling process.
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6.13 Concluding remarks

The chapter presented the most important steps to learn a model on the basis of a
finite set of input/output data. Though the entire procedure was globally depicted
as a waterfall process (Figure 6.6), it should be kept in mind that a learning pro-
cess, like any modelling effort, is better represented by a spiral model characterised
by feedback, iterations and adjustments. An example is the identification step,
composed of two nested loops, the inner one returning the parameters of a fixed
structure, and the external one searching for the best configuration.

The chapter focused on the core of the learning process which begins once the
data are in a tabular format. Nevertheless, it is worth reminding that the upstream
steps, sketched in Section 6.2-6.4 play a very important role as well. However, since
those steps are often domain and task-dependent, we considered them beyond the
scope of this book.

In the following chapters, we will quit the general perspective and we will delve
into the specificities of the best known learning algorithms.

6.14 Exercises

1. Consider an input/output regression task where n = 1, E[y|x] = sin(x) and p(y|x) ∼
N (sin(x), 1). Let N = 100 be the size of the training set and consider a quadratic
loss function.

Let the class of hypothesis be h3(x) = α0 +
∑3
m=1 αmx

m.

1. Estimate the parameter by least-squares.

2. Estimate the parameter by gradient-based search and plot the evolution of the
training error as a function of the number of iterations. Show in the same
figure the least-squares error.

3. Plot the evolution of the gradient-based parameter estimations as a function of
the number of iterations. Show in the same figure the least-squares parameters.

4. Discuss the impact of the gradient-based learning rate on the training error
minimisation.

5. Estimate the parameter by Levenberg-Marquardt search and plot the evolution
of the training error as a function of the number of iterations. Show in the
same figure the least-squares error.

6. Plot the evolution of the Levenberg-Marquardt parameter estimations as a
function of the number of iterations. Show in the same figure the least-squares
parameters.

2. Consider an input/output regression task where n = 1, E[y|x] = 3x+2 and p(y|x) ∼
N (3x+ 2, 1). Let N = 100 be the size of the training set and consider a quadratic
loss function. Consider an iterative gradient-descent procedure to minimize the
empirical error.

1. Show in a contour plot the evolution β̂(τ) of the estimated parameter vector
for at least 3 different learning rates.

2. Compute the least-squares solution and show the convergence of the iterated
procedure to the least-squares solution.

3. Let us consider the dependency where the conditional distribution of y is

y = sin(2πx1x2x3) + w

where w ∼ N(0, σ2), x ∈ R3 has a 3D normal distribution with an identity covari-
ance matrix, N = 100 and σ = 0.25.

Consider the following families of learners:
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1. constant model returning always zero

2. constant model h(x) = β0

3. linear model h(x) = xTβ

4. K nearest neighbour for K = 1, 3, 5, 7 where the distance is Euclidean

Implement for each learner above a function:

learner<-function(Xtr,Ytr,Xts){

####

## Xtr [N,n] input training set

## Ytr [N,1] output training set

## Xts [Nts,n] input test set

return(Yhat)

}

which returns a vector [Nts, 1] of predictions for the given input test set.

By using Monte Carlo simulation (S = 100 runs) and by using a fixed-input test set
of size Nts = 1000

• compute the average squared bias of all the learners,

• compute the average variance of all the learners,

• check the relation between squared bias, variance, noise variance and MSE

• define what is the best learner in terms of MSE,

• discuss the results.

Solution:

See the file Exercise3.pdf in the directory gbcode/exercises of the companion R
package (Appendix G).

4. The student should prove the following equality concerning the quantities defined
in Section 6.11:

FPR =
p

1− p
1− PPV

PPV
(1− FNR)

where p = Prob {y = +}.
Hint: use the Bayes theorem.



Chapter 7

Linear approaches

The previous chapters distinguished between two types of supervised learning tasks
according to the type of output:

Regression when we predict quantitative outputs, e.g. real or integer numbers.
Predicting the weight of an animal on the basis of its age and height is an
example of a regression problem.

Classification (or pattern recognition) where we predict qualitative or cate-
gorical outputs which assume values in a finite set of classes (e.g. black, white
and red) where there is no explicit ordering. Qualitative variables are also
referred to as factors. Predicting the class of an email on the basis of English
words frequency is an example of classification task.

This chapter will consider learning approaches to classification and regression
where the hypothesis functions are linear combinations of the input variables.

7.1 Linear regression

Linear regression is a very old technique in statistics and traces back to the least-
squares work of Gauss1.

7.1.1 The univariate linear model

The simplest regression model is the univariate linear regression model where the
input is supposed to be a scalar variable and the stochastic dependency between
input and output is described by

y = β0 + β1x+ w (7.1.1)

where x ∈ R is the regressor (or independent) variable, y is the measured response
(or dependent) variable, β0 is the intercept, β1 is the slope and w is called noise
or model error. We will assume that E[w] = 0 and that its variance σ2

w is inde-
pendent of the x value. The assumption of constant variance is often referred to as
homoscedasticity. From (7.1.1) we obtain

Prob {y = y|x} = Prob {w = y − β0 − β1x} , E[y|x] = f(x) = β0 + β1x

The function f(x) = E[y|x], also known as regression function, is a linear func-
tion in the parameters β0 and β1 (Figure 7.1). In the following we will intend as

1See https://tinyurl.com/ytc97aa5 to know more about the famous Gauss-Legendre dispute
on the least-squares discovery authorship.
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Figure 7.1: Conditional distribution and regression function for stochastic linear
dependence

linear model each input/output relationship which is linear in the parameters but
not necessarily in the dependent variables. This means that: i) any value of the
response variable y is described by a linear combination of a series of parameters
(regression slopes, intercept) and ii) no parameter appears as an exponent or is
multiplied or divided by another parameter. According to this definition of linear
model, then

• y = β0 + β1x is a linear model

• y = β0 + β1x
2 is again a linear model. Simply by making the transformation

X = x2, the dependency can be put in in the linear form (7.1.1).

• y = β0x
β1 can be studied as a linear model between Y = log(y) and X =

log(x) thanks to the equality

log(y) = β0 + β1 log(x)⇔ Y = β0 + β1X

• the relationship y = β0 + β1β
x
2 is not linear since there is no way to linearise

it.

7.1.2 Least-squares estimation

Suppose that N pairs of observations (xi, yi), i = 1, . . . , N are available. Let us
assume that data are generated by the following stochastic dependency

yi = β0 + β1xi + wi, i = 1, . . . , N (7.1.2)

where

1. the wi ∈ R are i.i.d realisations of the r.v. w having mean zero and constant
variance σ2

w (homoscedasticity),

2. the xi ∈ R are non/random and observed with negligible error.

The unknown parameters (also known as regression coefficients) β0 and β1 can be
estimated by the least-squares method. The method of least squares is designed to
provide
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1. the estimations β̂0 and β̂1 of β0 and β1, respectively

2. the fitted values of the response y

ŷi = β̂0 + β̂1xi, i = 1, . . . , N

so that the residual sum of squares (which is N times the empirical risk)

SSEemp = N · M̂ISEemp =

N∑
i=1

(yi − ŷi)2 =

N∑
i=1

(yi − β̂0 − β̂1xi)
2

is minimised. In other terms

{β̂0, β̂1} = arg min
{b0,b1}

N∑
i=1

(yi − b0 − b1xi)2

It can be shown that the least-squares solution is

β̂1 =
Sxy
Sxx

β̂0 = ȳ − β̂1x̄

if Sxx 6= 0, where

x̄ =

∑N
i=1 xi
N

, ȳ =

∑N
i=1 yi
N

and

Sxy =

N∑
i=1

(xi − x̄)yi

Sxx =

N∑
i=1

(xi − x̄)2 =

N∑
i=1

(x2
i − 2xix̄+ x̄2) =

N∑
i=1

(x2
i − xix̄− xix̄+ x̄2) =

=

N∑
i=1

[(xi − x̄)xi] +

N∑
i=1

[x̄(x̄− xi)] =

N∑
i=1

(xi − x̄)xi

It is worth noting that if x̄ = 0 and ȳ = 0 then β̂0 = 0 and

Sxy = 〈X,Y 〉, Sxx = 〈X,X〉 (7.1.3)

where X and Y are the [N, 1] vectors of x and y observations, respectively, and the
inner product 〈·, ·〉 of two vectors is defined in Appendix B.2.

Also it is possible to write down the relation between the least squares estimation
β̂1 and the sample correlation coefficient (E.0.3):

ρ̂2 =
β̂1Sxy
Syy

(7.1.4)

R script

The script Linear/lin uni.R computes and plots the least-squares solution for
N = 100 observations generated according to the dependency (7.1.2) where β0 = 2
and β1 = −2.

•



188 CHAPTER 7. LINEAR APPROACHES

If the dependency underlying the data is linear then the estimators are unbiased.
We show this property for β̂1:

EDN
[β̂1] = EDN

[
Sxy
Sxx

]
=

N∑
i=1

(xi − x̄)E[yi]

Sxx
=

1

Sxx

N∑
i=1

(xi − x̄)(β0 + β1xi) =

=
1

Sxx

[
N∑
i=1

[(xi − x̄)β0] +

N∑
i=1

[(xi − x̄)β1xi]

]
=
β1Sxx
Sxx

= β1

Note that the analytical derivation relies on the relation
∑N
i=1(xi − x̄) = 0 and the

fact that x is not a random variable. Also it can be shown [124] that

Var
[
β̂1

]
=

σ2
w

Sxx
(7.1.5)

E[β̂0] = β0 (7.1.6)

Var
[
β̂0

]
= σ2

w

(
1

N
+

x̄2

Sxx

)
(7.1.7)

Another important result in linear regression is that the quantity

σ̂2
w =

∑N
i=1(yi − ŷi)2

N − 2
(7.1.8)

is an unbiased estimator of σ2
w under the (strong) assumption that observations

have been generated according to (7.1.1). The denominator is often referred to as
the residual degrees of freedom, also denoted by df. The degree of freedom can
be seen as the number N of observations reduced by the numbers of parameters
estimated (slope and intercept). The estimate of the variance σ2

w can be used in
Equations (7.1.7) and (7.1.5) to derive an estimation of the variance of the intercept
and slope, respectively.

7.1.3 Maximum likelihood estimation

The properties of least-squares estimators rely on the only assumption that the

wi = yi − β0 − β1xi (7.1.9)

are i.i.d. realisations with mean zero and constant variance σ2
w. Therefore, no

assumption is made concerning the probability distribution of w (e.g. Gaussian or
uniform). On the contrary, if we want to use the maximum likelihood approach
(Section 3.8), we have to define the distribution of w. Suppose that w ∼ N (0, σ2

w).
By using (7.1.9), the likelihood function can be written as

LN (β0, β1) =

N∏
i=1

pw(wi) =
1

(2π)N/2σNw
exp

{
−
∑N
i=1(yi − β0 − β1xi)

2

2σ2
w

}
(7.1.10)

It can be shown that the estimates of β0 and β1 obtained by maximising LN (·)
under the normal assumption are identical to the ones obtained by least squares
estimation.

7.1.4 Partitioning the variability

An interesting way of assessing the quality of a linear model is to evaluate which
part of the output variability the model is able to explain. We can use the following
relation
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N∑
i=1

(yi − ȳ)2 =

N∑
i=1

(ŷi − ȳ)2 +

N∑
i=1

(yi − ŷi)2

i.e.

SSTot = SSMod + SSRes

where SSTot (which is also N times the sample variance of y) represents the total
variability of the response, SSMod is the variability explained by the model and
SSRes is the variability left unexplained. This partition helps to determine whether
the variation explained by the regression model is real or is no more than chance
variation. It will be used in the following section to perform hypothesis tests on the
quantities estimated by the regression model.

7.1.5 Test of hypotheses on the regression model

Suppose that we want to answer the question whether the regression variable x
truly influences the distribution Fy(·) of the response y or, in other words, that
they are linearly dependent. We can formulate the problem as a hypothesis testing
problem on the slope β1 where

H : β1 = 0, H̄ : β1 6= 0

If H is true, this means that the regressor variable does not influence the response
(at least not through a linear relationship). Rejection of H in favour of H̄ leads
to the conclusion that x significantly influences the response in a linear fashion. It
can be shown that, under the assumption that w is normally distributed, if the null
hypothesis H (null correlation) is true then

SSMod

SSRes/(N − 2)
∼ F1,N−2.

Large values of the F statistic (Section D.2.4) provide evidence in favour of H̄ (i.e.
a linear trend exists). The test is a two-sided test. In order to perform a single-sided
test, typically T -statistics are used.

7.1.5.1 The t-test

We want to test whether the value of the slope is equal to a predefined value β̄:

H : β1 = β̄, H̄ : β1 6= β̄

Under the assumption of normal distribution of w, the following relation holds

β̂1 ∼ N (β1,
σ2
w

Sxx
) (7.1.11)

It follows that
(β̂1 − β1)

σ̂

√
Sxx ∼ TN−2

where σ̂2 is the estimation of the variance σ2
w. This is a typical t-test applied to

the regression case. Note that this statistic can also be used to test a one-sided
hypothesis, e.g.

H : β1 = β̄, H̄ : β1 > β̄
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7.1.6 Interval of confidence

Under the assumption of normal distribution, according to (7.1.11)

Prob

{
−tα/2,N−2 <

(β̂1 − β1)

σ̂

√
Sxx < tα/2,N−2

}
= 1− α

where tα/2,N−2 is the upper α/2 critical point of the T -distribution with N − 2
degrees of freedom. Equivalently we can say that with probability 1 − α, the real
parameter β1 is covered by the interval described by

β̂1 ± tα/2,N−2

√
σ̂2

Sxx
(7.1.12)

Note that the interval (7.1.12) may be used to test the hypothesis of input irrele-
vance. If the value 0 is outside the interval above, we can reject the input irrelevance
hypothesis with 100(1− α)% confidence.

Similarly from (7.1.7) we obtain that the 100(1− α)% confidence interval of β0

is

β̂0 ± tα/2,N−2σ̂

√
1

N
+

x̄2

Sxx

7.1.7 Variance of the response

Let
ŷ = β̂0 + β̂1x

be the estimator of the regression function value in x. If the linear dependence (7.1.1)
holds, we have for an arbitrary x = x0

E[ŷ|x0] = E[β̂0] + E[β̂1]x0 = β0 + β1x0 = E[y|x0]

This means that the prediction ŷ is an unbiased estimator of the value of the
regression function in x0. Under the assumption of normal distribution of w, the
variance of ŷ in x0

Var [ŷ|x0] = σ2
w

[
1

N
+

(x0 − x̄)2

Sxx

]
where x̄ =

∑N
i=1 xi
N . This quantity measures how the prediction ŷ would vary if

repeated data collections from (7.1.1) and least-squares estimations were conducted.

R script

Let us consider a data set DN = {xi, yi}i=1,...,N where

yi = β0 + β1xi + wi

where β0 and β1 are known and w ∼ N (0, σ2
w) with σ2

w known. The R script
Linear/bv.R may be used to:

• Study experimentally the bias and variance of the estimators β̂0, β̂1 and
σ̂ when data are generated according to the linear dependency (7.1.2) with
β0 = −1, β1 = 1 and σw = 4.

• Compare the experimental values with the theoretical results.

• Study experimentally the bias and the variance of the response prediction.

• Compare the experimental results with the theoretical ones.

•
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R script

Consider the medical dataset available in the R script Linear/medical.R. This
script may be used to: i) estimate the intercept and slope of the linear model fitting
the dataset, ii) plot the fitted linear model, iii) estimate the variance of the estimator
of the slope, iv) test the hypothesis β1 = 0, v) compute the confidence interval of
β1 and compare your results with the output of the R command lm().

•

7.1.8 Coefficient of determination

The coefficient of determination, also known as R2,

R2 =
SSMod

SSTot
=

∑N
i=1(ŷi − ȳ)2∑N
i=1(yi − ȳ)2

= 1− SSRes

SSTot

is often used as a measure of the fit of the regression line.
This quantity, which satisfies the inequality 0 ≤ R2 ≤ 1, represents the propor-

tion of variation in the response data that is explained by the model. The coefficient
of determination is easy to interpret and can be understood by most experimenters
regardless of their training in statistics. However, it is a dangerous criterion for com-
parison of candidate models because any additional model terms (e.g. a quadratic
term) will decrease SSRes and thus increase R2. In other terms R2 can be made
artificially high by a practice of overfitting (Section 5.6) since it is not merely the
quality of fit which influences R2.

7.1.9 Multiple linear dependence

Consider a linear relation between an independent vector x ∈ X ⊂ Rn and a
dependent random variable y ∈ Y ⊂ R

y = β0 + β1x·1 + β2x·2 + · · ·+ βnx·n + w (7.1.13)

where w represents a random variable with mean zero and constant variance σ2
w.

Note that it is possible to establish a link [160] between the partial regression
coefficients βi and partial correlation terms (Section 2.16.3) showing that βi is
related to the conditional information of xi about y once fixed all the other terms
(ceteris paribus effect) [124]:

In matrix notation2 the equation 7.1.13 can be written as:

y = xTβ + w (7.1.14)

where x stands for the [p× 1] vector x = [1, x·1, x·2, . . . , x·n]T and p = n+ 1 is the
total number of model parameters.

7.1.10 The multiple linear regression model

Consider N observations DN = {〈xi, yi〉 : i = 1, . . . , N} generated according to the
stochastic dependence (7.1.14) where xi = [1, xi1, . . . , xin]T . We suppose that the
following multiple linear relation holds

Y = Xβ +W

2We use the notation x·j to denote the jth variable of the non random vector x, while xi =
[1, xi1, xi2, . . . , xin]T denotes the ith observation of the vector x. This extension of notation is
necessary when the input is not considered a random vector. In the generic case xj will be used
to denote the jth variable.
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where Y is the [N×1] response vector, X is the [N×p] data matrix, whose jth column
of X contains readings on the jth regressor, β is the [p× 1] vector of parameters

Y =


y1

y2

...
yN

 X =


1 x11 x12 . . . x1n

1 x21 x22 . . . x2n

...
...

...
...

1 xN1 xN2 . . . xNn

 =


xT1
xT2
...
xTN



β =


β0

β1

...
βn

 W =


w1

w2

...
wN


Here wi are assumed uncorrelated, with mean zero and constant variance σ2

w (ho-
mogeneous variance). Then Var [w1, . . . ,wN ] = σ2

wIN .

7.1.11 The least-squares solution

We seek the least-squares estimator β̂ such that

β̂ = arg min
b

N∑
i=1

(yi − xTi b)2 = arg min
b

(
(Y −Xb)T (Y −Xb)

)
(7.1.15)

where

SSEemp = N · M̂ISEemp =
(
(Y −Xb)T (Y −Xb)

)
= eT e (7.1.16)

is the residual sum of squares (which is N times the empirical risk (5.2.8) with
quadratic loss) and

e = Y −Xb

the [N × 1] vector of residuals. The quantity SSEemp is a quadratic function in the
p parameters. In order to minimise

(Y −Xβ̂)T (Y −Xβ̂) = β̂TXTXβ̂ − β̂TXTY − Y TXβ̂ + Y TY

the vector β̂ must satisfy

∂

∂β̂
[(Y −Xβ̂)T (Y −Xβ̂)] = −2XT (Y −Xβ̂) = 0 (7.1.17)

Assuming X is of full column rank, the second derivative

∂2

∂β̂∂β̂T
[(Y −Xβ̂)T (Y −Xβ̂)] = 2XTX

is definite positive and the SSEemp attains its minimum in the solution of the least-
squares normal equations

(XTX)β̂ = XTY

As a result
β̂ = (XTX)−1XTY = X†Y (7.1.18)

where the XTX matrix is a symmetric [p × p] matrix (also known as Gram ma-
trix) and X† = (XTX)−1XT is called the pseudo-inverse of X since X†X = IN .

Note that the computation of β̂ represents the parametric identification step of the
supervised learning procedure (Section 5.8) when the class of hypothesis is linear.
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7.1.12 Least-squares and non full-rank configurations

A full-rank X is required to ensure that the matrix XTX is invertible in (7.1.18).
However, for numerical reasons it is recommended that XTX is not only invertible
but also well-conditioned, or equivalently non ill-conditioned [2]. An ill-conditioned
matrix is an almost singular matrix: its inverse may contain very large entries
and sometimes numeric overflows. This means that small changes in the data may
cause large and unstable changes in the solution β̂. Such sensibility of the solution
to the dataset should evoke in the attentive reader the notion of estimator variance
(Section 3.5). In fact, in the following sections we will show that the variance of
least-squares estimators is related to the inverse of XTX (e.g. Equation (7.1.19)).

But what to do in practice if X is not full-rank (or rank-deficient) or ill-
conditioned? A first numerical fix consists in computing the generalised QR de-
composition (Appendix B.4)

X = QR

where Q is an orthogonal [N, p′] matrix and R is a [p′, p] upper-triangular matrix
of full row rank with p′ < p. Since RRT is invertible, the pseudo-inverse in (7.1.18)
can be written as X† = RT (RRT )−1QT (details in Section 2.8.1 of [2]). A second
solution consists in regularising the optimisation, i.e. constraining the optimisation
problem (7.1.15) by adding a term which penalises solutions β̂ with too large a
norm. This leads to the ridge regression formulation which will be discussed in
Section 10.5.1.1. In more general terms, since no/ invertible or ill-conditioned con-
figurations are often due to highly correlated (multicollinear) or redundant inputs,
the use of feature selection strategies (Chapter 10) before the parametric identifi-
cation step may be beneficial.

7.1.13 Properties of least-squares estimators

Under the condition that the linear stochastic dependence (7.1.14) holds, it can be
shown [124] that:

• If E[w] = 0 then the random vector β̂ is an unbiased estimator of β.

• The residual mean square estimator

σ̂2
w =

(Y −Xβ̂)T (Y −Xβ̂)

N − p

is an unbiased estimator of the error variance σ2
w.

• If the wi are uncorrelated and have common variance, the variance-covariance
matrix of β̂ is given by

Var[β̂] = σ2
w(XTX)−1 (7.1.19)

It can also be shown (Gauss-Markov theorem) that the least-squares estima-

tion β̂ is the ”best linear unbiased estimator” (BLUE) i.e. it has the lowest
variance among all linear unbiased estimators.

From the results abov,e it is possible to derive the confidence intervals of model
parameters, similarly to the univariate case discussed in Section 7.1.6.

R script

A list of the most important least-squares summary statistics is returned by the
summary of the R command lm. See for instance the script Linear/ls.R.
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summary(lm(Y~X))

Call:

lm(formula = Y ~ X)

Residuals:

Min 1Q Median 3Q Max

-0.40141 -0.14760 -0.02202 0.03001 0.43490

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.09781 0.11748 9.345 6.26e-09

X 0.02196 0.01045 2.101 0.0479

(Intercept) ***

X *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2167 on 21 degrees of freedom

Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343

F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

•

7.1.14 Variance of the prediction

Since the estimator β̂ is unbiased, this is also the case for the prediction ŷ = xT0 β̂
for a generic input value x = x0. Its variance is

Var [ŷ|x0] = σ2
wx

T
0 (XTX)−1x0 (7.1.20)

Assuming that w is normally distributed, the 100(1−α)% confidence bound for the
regression value in x0 is given by

ŷ(x0)± tα/2,N−pσ̂w
√
xT0 (XTX)−1x0

where tα/2,N−p is the upper α/2 percent point of the t-distribution with N − p

degrees of freedom and the quantity σ̂w
√
xT0 (XTX)−1x0, obtained from (7.1.20),

is the standard error of prediction for multiple regression.

R script

The R script Linear/bv mult.R validates by Monte Carlo simulation the properties
of least-squares estimation mentioned in Section 7.1.11 and 7.1.14.

In order to assess the generality of the results, we invite the reader to run the
script for different input sizes n, different number of observations N and different
values of the parameter β.

•

7.1.15 The HAT matrix

The Hat matrix is defined as

H = X(XTX)−1XT (7.1.21)
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It is a symmetric, idempotent [N ×N ] matrix that transforms the output values Y
of the training set in the regression predictions Ŷ :

Ŷ = Xβ̂ = X(XTX)−1XTY = HY

Using the above relation, the vector of residuals can be written as:

e = Y −Xβ̂ = Y −X(XTX)−1XTY = [I −H]Y

and the residual sum of squares as

eT e = Y T [I −H]2Y = Y T [I −H]Y = Y TPY (7.1.22)

where P is a [N ×N ] matrix, called the projection matrix.
if X has full rank, by commutativity of the trace operator it follows that

tr(H) = tr(X(XTX)−1XT ) = tr(XTX(XTX)−1) = tr(Ip) = p (7.1.23)

If we perform a QR decomposition of X (Appendix B.4) then we obtain

H = X(XTX)−1XT = QR(RTQTQR)−1RTQT = QRR−1(RT )−1RTQT = QQT

(7.1.24)
Note that, in this cas,e the input matrix X is replaced by the matrix Q which
contains an orthogonalised transformation of the original inputs.

7.1.16 Generalisation error of the linear model

Given a training dataset DN = {〈xi, yi〉 : i = 1, . . . , N} and a query point x, it is
possible to return a linear prediction

ŷ = h(x, α) = xT β̂

where β̂ is returned by least-squares estimation (7.1.18). From an estimation per-

spective, β̂ is a realisation of the random estimator β̂ for the specific dataset DN .
But which precision can we expect from ŷ = xT β̂ if we average the prediction
error over all finite-size datasets DN that can be generated by the linear depen-
dency (7.1.13)?

A quantitative measure of the quality of the linear predictor on the whole domain
X is the Mean Integrated Squared Error (MISE) defined in (5.5.24). But how can

we estimate this quantity in the linear case? Also, is the empirical risk M̂ISEemp

in (7.1.16) a reliable estimate of MISE?

7.1.16.1 The expected empirical error

This section derives analytically that the empirical risk M̂ISEemp (defined in (7.1.16))
is a biased estimator of the MISE generalisation error.

Let us first compute the expectation of the residual sum of squares which is
equal to N times the empirical risk. According to (7.1.22) and Theorem 4.2 the
expectation can be written as

EDN
[SSEemp] = EDN

[eTe] = EDN
[YTPY] = σ2

wtr(P ) + E[YT ] P E[Y]

Since tr(ABC) = tr(CAB)

tr(P ) = tr(I −H) = N − tr(X(XTX)−1XT )

= N − tr(XTX(XTX)−1) = N − tr(Ip) = N − p
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and we have

EDN
[eTe] = (N − p)σ2

w + (Xβ)TP (Xβ) = (7.1.25)

= (N − p)σ2
w + βTXT (I −X(XTX)−1XT )Xβ = (7.1.26)

= (N − p)σ2
w (7.1.27)

It follows that

EDN
[M̂ISEemp] = EDN

[
SSEemp

N

]
= EDN

[
eTe

N

]
= (1− p/N)σ2

w (7.1.28)

is the expectation of the error made by a linear model trained on DN to predict the
value of the output in the same dataset DN .

In order to obtain the MISE term, we derive analytically the expected sum of
squared errors of a linear model trained on DN and used to predict for the same
training inputs X a set of outputs Yts distributed according to the same linear
law (7.1.13) but independent of the training output Y .

EDN ,Yts [(Yts −Xβ̂)T (Yts −Xβ̂)] =

= EDN ,Yts
[(Yts −Xβ +Xβ −Xβ̂)T (Yts −Xβ +Xβ −Xβ̂)] =

= EDN ,Yts
[(Wts +Xβ −Xβ̂)T (Wts +Xβ −Xβ̂)] =

= Nσ2
w + EDN

[(Xβ −Xβ̂)T (Xβ −Xβ̂)]

Since

Xβ −Xβ̂ = Xβ −X(XTX)−1XTY =

= Xβ −X(XTX)−1XT (Xβ +W ) = −X(XTX)−1XTW

we obtain

Nσ2
w + EDN

[(Xβ −Xβ̂)T (Xβ −Xβ̂)]

= Nσ2
w + EDN

[(WTX(XTX)−1XT )(X(XTX)−1XTW)]

= Nσ2
w + EDN

[WTX(XTX)−1XTW]

= Nσ2
w + σ2

wtr(X(XTX)−1XT )

= Nσ2
w + σ2

wtr(XTX(XTX)−1)

= Nσ2
w + σ2

wtr(Ip) = σ2
w(N + p)

By dividing the above quantity by N

MISE = (1 + p/N)σ2
w (7.1.29)

From (7.1.28) and (7.1.29) it follows that the empirical error M̂ISEemp is a biased
estimate of MISE:

EDN
[M̂ISEemp] = EDN

[
eTe

N

]
= σ2

w(1− p/N) 6= MISE = σ2
w(1 + p/N) (7.1.30)

As a consequence, if we replace M̂ISEemp with

eTe

N
+ 2

σ2
wp

N
(7.1.31)

we correct the bias and we obtain an unbiased estimator of the MISE generalisation
error. Nevertheless, this estimator requires an estimate of the noise variance.
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R script

The R script Linear/ee.R performs a Monte Carlo validation of (7.1.30).

•

Example

Let {y1, . . . , yN} ← Fy be the training set. Consider the simplest linear predictor
of the output variable: the average µ̂y (i.e. p = 1). This means that

ŷi =

∑N
i=1 yi
N

= µ̂y, i = 1, . . . , N

We want to show that, even for this simple estimator, the empirical error is a biased
estimator of the quality of this predictor. Let µ be the mean of the r.v. y. Let us
write y as

y = µ+ w

where E[w] = 0 and Var [w] = σ2. Let {z1, . . . , zN} ← Fy a test set coming from
the same distribution underlying DN . Let us compute the expected empirical error
and the mean integrated square error.

Since E[µ̂y] = µ and Var
[
µ̂y
]

= σ2/N

N ·MISE = EDN ,Yts [

N∑
i=1

(zi − µ̂y)2] = EDN ,w[

N∑
i=1

(µ+ wi − µ̂y)2]

= Nσ2 +

N∑
i=1

EDN
[(µ− µ̂y)2]

= Nσ2 +N(σ2/N) = (N + 1)σ2

Instead, since σ̂y = (
∑N
i=1(yi − µy)2)/(N − 1) and E[σ̂2

y] = σ2

EDN
[

N∑
i=1

(yi − µ̂y)2] = EDN
[(N − 1)σ̂2

y] = (N − 1)σ2 6= N ·MISE

It follows that, even for a simple estimator like the estimator of the mean, the
empirical error is a biased estimate of the accuracy (see R file Linear/ee mean.R).

•

7.1.16.2 The PSE and the FPE

In the previous section we derived that M̂ISEemp is a biased estimate of MISE and
that the addition of the correction term 2σ2

wp/N makes it unbiased.
Suppose we have an estimate σ̂2

w of σ2
w. By replacing it into the expres-

sion (7.1.31) we obtain the so-called Predicted Square Error (PSE) criterion

PSE = M̂ISEemp + 2σ̂2
wp/N (7.1.32)

In particular, if we take as estimate of σ2
w the quantity

σ̂2
w =

1

N − p
SSEemp =

N

N − p
M̂ISEemp

we obtain the so-called Final Prediction Error (FPE)

FPE =
1 + p/N

1− p/N
M̂ISEemp (7.1.33)
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Figure 7.2: Estimation of the generalisation error of hm, m = 2, . . . , 7 returned by
the empirical error.

The PSE and the FPE criteria allow us to replace the empirical risk with a
more accurate estimate of the generalisation error of a linear model. Although their
expression is easy to compute, it is worth reminding that their derivation relies on
the assumption that the stochastic input/output dependence has the linear form
7.1.14.

R script

Let us consider an input/output dependence

y = f(x) + w = 1 + x+ x2 + x3 + w (7.1.34)

where w ∼ N (0, 1) and x ∼ U(−1, 1). Suppose that a dataset DN of N = 100
input/output observations is drawn from the joint distribution of 〈x,y〉. The R
script Linear/fpe.R assesses the prediction accuracy of 7 different models having
the form

hm(x) = β̂0 +

m∑
j=1

β̂jx
j (7.1.35)

by using the empirical risk and the FPE measure. These results are compared with
the generalisation error measured by

MISEm =
1

N

N∑
i=1

(hm(xi)− f(xi))
2 (7.1.36)

The empirical risk and the FPE values for m = 2, . . . , 7 are plotted in Figure 7.2
and 7.3, respectively. The values MISEm are plotted in Figure 7.4. It is evident, as
confirmed by Figure 7.4, that the best model should be h3(x) since it has the same
analytical structure as f(x). However, the empirical risk is not able to detect this
and returns as the best model the one with the highest complexity (m = 7). This

is not the case for FPE which, by properly correcting the M̂ISEemp value, is able to
select the optimal model.

•
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Figure 7.3: Estimation of the generalisation error of hm, m = 2, . . . , 7 returned by
the FPE.

Figure 7.4: Computation of the generalisation error of hm, m = 2, . . . , 7 by (7.1.36).
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Figure 7.5: Leave-one-out for linear models. The leave-one-out error can be com-
puted in two equivalent ways: the slowest way (on the right) which repeats N times
the training and the test procedure; the fastest way (on the left) which performs
only once the parametric identification and the computation of the PRESS statistic.

7.1.17 The PRESS statistic

Section 5.9.1 introduced cross-validation to provide a reliable estimate of the gener-
alisation error GN . The disadvantage of this approach is that it requires the training
process to be repeated l times, implying a large computational effort. However, in
the linear case the PRESS (Prediction Sum of Squares) statistic [7] returns the leave-
one-out cross-validation error at a reduced computational cost (Fig. 7.5). PRESS
relies on a simple formula which returns the leave-one-out (l-o-o) as a by-product

of the parametric identification of β̂ in Eq. (8.1.41). Consider a training set DN in
which for N times

1. we set aside the ith observation (i = 1, . . . , N) 〈xi, yi〉 from the training set,

2. we use the remaining N − 1 observations to estimate the linear regression
coefficients β̂−i,

3. we use β̂−i to predict the target in xi.

The leave-one-out residual is

eloo
i = yi − ŷ−ii = yi − xTi β̂−i, i = 1, . . . , N (7.1.37)

The PRESS statistic is an efficient way to compute the l-o-o residuals on the basis of
the simple regression performed on the whole training set. This allows a fast cross-
validation without repeating N times the leave-one-out procedure. The PRESS
procedure can be described as follows:

1. use the whole training set to estimate the linear regression coefficients β̂. This
procedure is performed only once and returns, as a byproduct, the Hat matrix
(see Section 7.1.15)

H = X(XTX)−1XT (7.1.38)

2. compute the residual vector e, whose ith term is ei = yi − xTi β̂,

3. use the PRESS statistic to compute eloo
i as

eloo
i =

ei
1−Hii

(7.1.39)
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where Hii is the ith diagonal term of the matrix H.

Note that (7.1.39) is not an approximation of (7.1.37) but simply a faster way of
computing the leave-one-out residual eloo

i .
Let us now derive the formula of the PRESS statistic. Matrix manipulations

show that
XTX − xixTi = XT

−iX−i (7.1.40)

where XT
−iX−i is the XTX matrix obtained by putting the ith row aside. Using

the relation (B.8.12) we have

(XT
−iX−i)

−1 = (XTX−xixTi )−1 = (XTX)−1 +
(XTX)−1xix

T
i (XTX)−1

1−Hii
(7.1.41)

and

β̂−i = (XT
−iX−i)

−1X ′−iy−i =

[
(XTX)−1 +

(XTX)−1xix
T
i (XTX)−1

1−Hii

]
XT
−iy−i

(7.1.42)
where y−i is the target vector with the ith example set aside.

From (7.1.37) and (7.1.42) we have

eloo
i = yi − xTi β̂−i

= yi − xTi
[
(XTX)−1 +

(XTX)−1xix
T
i (XTX)−1

1−Hii

]
XT
−iy−i

= yi − xTi (XTX)−1XT
−iy−i −

Hiix
T
i (XTX)−1XT

−iy−i

1−Hii

=
(1−Hii)yi − xTi (XTX)−1XT

−iy−i

1−Hii

=
(1−Hii)yi − xTi (XTX)−1(XT y − xiyi)

1−Hii
=

=
(1−Hii)yi − ŷi +Hiiyi

1−Hii
=

yi − ŷi
1−Hii

=
ei

1−Hii

(7.1.43)

where XT
−iy−i + xiyi = XT y and xTi (XTX)−1XT y = ŷi. Thus, the leave-one-out

estimate of the local mean integrated squared error is:

Ĝloo =
1

N

N∑
i=1

{
yi − ŷi
1−Hii

}2

(7.1.44)

Since from (7.1.23) the sum of the diagonal terms of the H matrix is p, the
average value of Hii is p/N . It follows that the PRESS may be approximated by

Ĝloo ≈
1

N

N∑
i=1

{
yi − ŷi

1− p/N

}2

which leads us to the GCV formula (6.8.34).

7.1.18 Dual linear formulation

Consider a linear regression problem with [N,n] input matrix X and [N, 1] out-
put vector y. The conventional least-squares solution is the [p, 1] parameter vec-
tor (7.1.18) where p = n+1. This formulation is common in conventional statistical
settings where the number of observations is supposed to be much larger than the
number of variables.
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However, machine learning may be confronted with high-dimensional settings
where the ratio of observations to features is low: this would imply a very large
value of p and risks of ill-conditioning of the numerical solution. In this case it
is interesting to consider a dual formulation of the least-squares problem based
on (B.8.13). In this formulation

β̂ = (X ′X)−1X ′y = X ′X(X ′X)−2X ′y︸ ︷︷ ︸
α

= X ′α =

N∑
i=1

αixi

where α is a [N, 1] vector and xi is the [n, 1] vector which represents the ith ob-
servation. It follows that if N << p, the dual formulation has fewer parameters
than the conventional one with advantages in terms of storage requirements and
numerical conditioning.

7.1.19 The weighted least-squares

The assumption of homogeneous variance of the noise w made in Eq. (7.1.14) is often
violated in practical situations. Suppose we relax the assumption that Var(w) =
σ2
wIN with IN the identity matrix and assume instead that there is a positive

definite matrix V for which Var(w) = V . We may wish to consider

V = diag[σ2
1 , σ

2
2 , . . . , σ

2
N ] (7.1.45)

in which case we are assuming uncorrelated errors with error variances that vary
from observation to observation. As a result it would seem reasonable that the
estimator of β should take this into account by weighting the observations in some
way that allows for the differences in the precision of the results. Then the function
being minimised is no more (7.1.16) but depends on V and is given by

(y −Xβ̂)TV −1(y −Xβ̂) (7.1.46)

The estimate of β is then

β̂ = (XTV −1X)−1XTV −1y (7.1.47)

The corresponding estimator is called the generalised least-squares estimator and
has the following properties: i) it is unbiased, that is E[β̂] = β, ii) under the as-
sumption w ∼ N (0, V ) it is the minimum variance estimator among all the unbiased
estimators.

7.1.20 Recursive least-squares

In many analytics tasks, data records are not statically available but have to be
processed and analysed continuously rather than in batches. Examples are the data
streams generated from sensors (notably IoT), financial, business intelligence or
adaptive control applications. In those cases it is useful not to restart from scratch
the model estimation but simply to update the model on the basis of the newly
collected data. One appealing feature of least-squares estimates is that they can be
updated at a lower cost than their batch counterpart.

Let us rewrite the least-squares estimator (7.1.18) for a training set of N obser-
vations as:

β̂(N) = (XT
(N)X(N))

−1XT
(N)Y(N)

where the subscript (N) is added to denote the number of observations used for
the estimation. Suppose that a new data point 〈xN+1, yN+1〉 becomes available.



7.1. LINEAR REGRESSION 203

Instead of recomputing the estimate β̂(N+1) by using all the N + 1 available data,

we want to derive β̂(N+1) as an update of β̂(N). This problem is solved by the
so-called recursive least-squares (RLS) estimation [26].

If a single new example 〈xN+1, yN+1〉, with xN+1 a [1, p] vector, is added to the

training set the X matrix acquires a new row and β̂(N+1) can be written as:

β̂(N+1) =

([
X(N)

xN+1

]T [
X(N)

xN+1

])−1 [
X(N)

xN+1

]T [
Y(N)

yN+1

]
By defining the [p, p] matrix

S(N) = (XT
(N)X(N))

we have

S(N+1) = (XT
(N+1)X(N+1)) =

([
XT

(N)x
T
N+1

] [ X(N)

xN+1

])
=
(
XT

(N) X(N) + xTN+1xN+1

)
= S(N) + xTN+1xN+1

(7.1.48)

Since [
X(N)

xN+1

]T [
Y(N)

yN+1

]
= XT

(N)Y(N) + xTN+1yN+1

and

S(N)β̂(N) = (XT
(N)X(N))

[
(XT

(N)X(N))
−1XT

(N)Y(N)

]
= XT

(N)Y(N)

we obtain

S(N+1)β̂(N+1) =

[
X(N)

xN+1

]T [
Y(N)

yN+1

]
= S(N)β̂(N) + xTN+1yN+1

=
(
S(N+1) − xTN+1xN+1

)
β̂(N) + xTN+1yN+1

= S(N+1)β̂(N) − xTN+1xN+1β̂(N) + xTN+1yN+1

or equivalently

β̂(N+1) = β̂(N) + S−1
(N+1)x

T
N+1(yN+1 − xN+1β̂(N)) (7.1.49)

7.1.20.1 1st Recursive formulation

From (7.1.48) and (7.1.49) we obtain the following recursive formulation

S(N+1) = S(N) + xTN+1xN+1

γ(N+1) = S−1
(N+1)x

T
N+1

e = yN+1 − xN+1β̂(N)

β̂(N+1) = β̂(N) + γ(N+1)e

where the term β̂(N+1) can be expressed as a function of the old estimate β̂(N) and
the new observation 〈xN+1, yN+1〉. This formulation requires the inversion of the
[p×p] matrix S(N+1). This operation is computationally expensive but, fortunately,
using a matrix inversion theorem, an incremental formula for S−1 can be found.
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7.1.20.2 2nd Recursive formulation

Once defined
V(N) = S−1

(N) = (XT
(N)X(N))

−1

we have (S(N+1))
−1 = (S(N) + xTN+1xN+1)−1 and

V(N+1) = V(N) − V(N)x
T
(N+1)(I + xN+1V(N)x

T
N+1)−1xN+1V(N) (7.1.50)

= V(N) −
V(N)x

T
N+1xN+1V(N)

1 + xN+1V(N)x
T
N+1

(7.1.51)

From (7.1.50) and (7.1.49) we obtain a second recursive formulation:

V(N+1) = V(N) −
V(N)x

T
N+1xN+1V(N)

1+xN+1V(N)x
T
N+1

γ(N+1) = V(N+1)x
T
N+1

e = yN+1 − xN+1β̂(N)

β̂(N+1) = β̂(N) + γ(N+1)e

(7.1.52)

7.1.20.3 RLS initialisation

Both recursive formulations presented above require the initialisation values β̂(0)

and V(0). One way to avoid choosing these initial values is to collect the first N

data points, to solve β̂(N) and V(N) directly from

V(N) = (XT
(N)X(N))

−1

β̂(N) = V(N)X
T
(N)Y(N)

and to start iterating from the N + 1th point. Otherwise, in case of a generic
initialisation β̂(0) and V(0) we have the following relations

V(N) = (V(0) +XT
(N)X(N))

−1

β̂(N) = V(N)(X
T
(N)Y(N) + V −1

(0) β̂(0))

A common choice is to put

V(0) = aI, a > 0

Since V(0) represents the variance of the estimator to choose a very large a is equiv-
alent to consider the initial estimation of β as very uncertain. By setting a equal to
a large number, the RLS algorithm will diverge very rapidly from the initialisation
β̂(0). Therefore, we can force the RLS variance and parameters to be arbitrarily

close to the ordinary least-squares values, regardless of β̂(0).

In any case, in the absence of further information, the initial value β̂(0) is usually
put equal to a zero vector.

7.1.20.4 RLS with forgetting factor

In some adaptive configurations it can be useful not to give equal importance to all
the historical data but to assign higher weights to the most recent data (and then
to forget the oldest one). This may happen when the phenomenon underlying the
data is non/stationary or when we want to approximate a nonlinear dependence by
using a linear model which is local in time. Both of these situations are common in
adaptive control problems.
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Figure 7.6: RLS fitting of a nonlinear function where the arrival order of data is
from left to right

RLS techniques can deal with these situations by a modification of the formu-
lation (7.1.52) obtained by adding a forgetting factor µ < 1.

V(N+1) = 1
µ

(
V(N) −

V(N)x
T
N+1xN+1V(N)

1+xN+1V(N)x
T
N+1

)
γ(N+1) = V(N+1)x

T
N+1

e = yN+1 − xN+1β̂(N)

β̂(N+1) = β̂(N) + γ(N+1)e

Note that: (i) the smaller µ, the higher the forgetting, (ii) for µ = 1 we have the
conventional RLS formulation.

R script

The R script Linear/lin rls.R implements the RLS fitting of a nonlinear univari-
ate function. The simulation shows that the fitting evolves as long as data xi, yi,
i = 1, . . . , N are collected. Note that the values xi, i = 1, . . . , N are increasingly
ordered. This means that x is not random and that the oldest collected values are
the ones with the lowest xi.

The final fitting for a forgetting factor µ = 0.9 is shown in Figure 7.6. Note that
the linear fitting concerns only the rightmost points since the values on the left,
which are also the oldest ones, are forgotten.

•

7.2 Linear approaches to classification

The methods presented so far deal with linear regression tasks. Those methods
may be easily extended to classification once we consider that in a binary 0/1
classification case the conditional expectation coincides with conditional probability:

E[y|x] = 1 · Prob {y = 1|x}+ 0 · Prob {y = 0|x} = Prob {y = 1|x} (7.2.53)
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In other words, by encoding the two classes in 0/1 values and estimating the con-
ditional expectation with regression techniques, we estimate as well the conditional
probability. Such value may be used to return the most probable class associated
to a query point x.

This section will present some additional strategies to learn linear boundaries
between classes. The first strategy relies on modelling the class conditional densities
and derive from them the equation of the boundary region. The other strategies
aim to learn directly the equations of separating hyperplanes.

7.2.1 Linear discriminant analysis

Let x ∈ Rn denote a real/valued random input vector and y a categorical random
output variable that takes values in the set {c1, . . . , cK} such that

K∑
k=1

Prob {y = ck|x} = 1

A classifier can be represented in terms of a set of K discriminant functions
gk(x), k = 1, . . . ,K such that the classifier applies the following decision rule [57]:
assigns a feature vector x to a class ŷ(x) = ck if

k = arg max
j
gj(x) (7.2.54)

Section 5.3 showed that in the case of a zero-one loss function (Equation (5.3.13)),
the optimal classifier corresponds to a maximum a posteriori discriminant function
gk(x) = Prob {y = ck|x}. This means that if we are able to define the K functions
gk(·), k = 1, . . . ,K and we apply the classification rule (7.2.54) to an input x, we
obtain a classifier which is equivalent to the Bayes one.

The discriminant functions divide the feature space into K decision regions Dk,
where a decision region Dk is a region of the input space X where the discriminant
classifier returns the class ck for each x ∈ Dk. The regions are separated by decision
boundaries, i.e. surfaces in the domain of x where ties occur among the largest
discriminant functions.

Example

Consider a binary classification problem where y can take values in {c1, c2} and
x ∈ R2. Let g1(x) = 3x1 + x2 + 2 and g2(x) = 2x1 + 2 the two discriminant
functions associated to the class x1 and x2, respectively. The classifier will return
the class c1 if

3x1 + x2 + 2 > 2x1 + 2⇔ x1 > −x2

The decision regions D1 and D2 are depicted in Figure 7.7.

•

We can multiply all the discriminant functions by the same positive constant
or shift them by the same additive constant without influencing the decision [57].
More generally, if we replace every gk(z) by f(gk(z)), where f(·) is a monotonically
increasing function, the resulting classification is unchanged.

For example, in the case of a zero/one loss function, any of the following choices
gives identical classification result:

gk(x) = Prob {y = ck|x} =
p(x|y = ck)P (y = ck)∑K
k=1 p(x|y = ck)P (y = ck)

(7.2.55)

gk(x) = p(x|y = ck)P (y = ck) (7.2.56)

gk(x) = ln p(x|y = ck) + lnP (y = ck) (7.2.57)
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Figure 7.7: Decision boundary and decision regions for the binary discrimination
functions g1(x) = 3x1 + x2 + 2 and g2(x) = 2x1 + 2

and returns a Bayes classifier.

7.2.1.1 Discriminant functions in the Gaussian case

Let us consider a binary classification task where the inverse conditional densities
are multivariate normal (Section 2.15), i.e. p(x = x|y = ck) ∼ N (µk,Σk) where
x ∈ Rn, µk is a [n, 1] vector and Σk is a [n, n] covariance matrix. Since

p(x = x|y = ck) =
1

(
√

2π)n
√

det(Σk)
exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)

}
from (7.2.57) we obtain

gk(x) = ln p(x|y = ck) + lnP (y = ck) (7.2.58)

= −1

2
(x− µk)TΣ−1

k (x− µk)− n

2
ln 2π − 1

2
ln det(Σk) + lnP (y = ck)

(7.2.59)

If we make no assumptions about Σk the discriminant function is quadratic. Now
let us consider a simpler case where all the distributions have the same diagonal
covariance matrix Σk = σ2I where I is the [n, n] identity matrix. It follows that

det(Σk) = σ2n, Σ−1
k = (1/σ2)I

are independent of k and can be ignored by the decision rule (7.2.54). From (7.2.58),
we obtain the simpler discriminant function

gk(x) = −‖x− µk‖
2

2σ2
+ lnP (y = ck)

= − (x− µk)T (x− µk)

2σ2
+ lnP (y = ck)

= − 1

2σ2
[xTx− 2µTk x+ µTk µk] + lnP (y = ck)

However, since the quadratic term xTx is the same for all k this is equivalent to a
linear discriminant function

gk(x) = wTk x+ wk0 (7.2.60)

where wk is a [n, 1] vector

wk =
1

σ2
µk (7.2.61)
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and

wk0 = − 1

2σ2
µTk µk + lnP (y = ck) (7.2.62)

In the two-class problem, the decision boundary (i.e. the set of points where g1(x) =
g2(x)) can be obtained by solving the identity

wT1 x+ w10 = wT2 x+ w20 ⇔ (w1 − w2)Tx− (w20 − w10) = 0

We obtain a hyperplane having equation

wT (x− x0) = 0 (7.2.63)

where

w =
µ1 − µ2

σ2

and

x0 =
1

2
(µ1 + µ2)− σ2

‖µ1 − µ2‖2
ln

Prob {y = c1}
Prob {y = c2}

(µ1 − µ2)

This can be verified by the fact that wTx0 = w20 − w10. The equation (7.2.63)
defines a hyperplane through the point x0 and orthogonal to the vector w.

7.2.1.2 Uniform prior case

If the prior probabilities P (y = ck) are identical for the K classes, then the term
lnP (y = ck) is a constant that can be ignored. In this case, it can be shown that
the optimum decision rule is a minimum distance classifier [57]. This means that
in order to classify an input x, it measures the Euclidean distance ‖x−µk‖2 from x
to each of the K mean vectors, and assign x to the category of the nearest mean. It
can be shown that for the more generic case Σk = Σ, the discriminant rule is based
on minimising the Mahalanobis distance

ĉ(x) = arg min
k

(x− µk)TΣ−1(x− µk) (7.2.64)

R script

The R script Linear/discri.R considers a binary classification task (c1 =red,
c2 =green) where x ∈ R2 and the inverse conditional distributions of the two
classes are N (µ1, σ

2I) and N (µ2, σ
2I), respectively. Suppose that the two a priori

probabilities are identical, that σ = 1, µ1 = [−1,−2]T and µ2 = [2, 5]T . The
positions of 100 points randomly drawn from N (µ1, σ

2I), of 100 points drawn from
N (µ2, σ

2I) together with the optimal decision boundary computed by (7.2.63) are
plotted in Figure 7.8.

The R script Linear/discri2.R shows instead the limitations of the LDA ap-
proach when the assumption of Gaussian unimodal class-conditional distributions
is not respected. Suppose that the two a priori probabilities are identical, but that
the class conditional distribution of the green class is a mixture of two Gaussians.
The positions of 1000 points randomly drawn from the two class-conditional distri-
butions together with the LDA decision boundary computed by (7.2.63) are plotted
in Figure 7.9.

•
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Figure 7.8: Binary classification problem: distribution of inputs and linear decision
boundary

Figure 7.9: Binary classification problem where one class distribution is bimodal:
distribution of inputs and linear decision boundary. Since the classification task is
not linearly separable, the LDA classifier performs poorly.
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Figure 7.10: Several hyperplanes separating the two classes (blue and red).

7.2.1.3 LDA parameter identification

In a real setting, we do not have access to the quantities µk, Σ and Prob {y = ck}
to compute the boundary (7.2.63). Before applying the discrimination rule above,
we need to estimate those quantities from the dataset DN :

P̂rob {y = ck} =
Nk
N

(7.2.65)

µ̂k =

∑
i:yi=ck

xi

Nk
(7.2.66)

Σ̂ =

∑K
k=1

∑
i:yi=ck

(xi − µ̂k)(xi − µ̂k)T

N −K
(7.2.67)

where Nk is the number of observations labelled with the class ck and (7.2.67) is
also known as pooled covariance [90].

7.2.2 Perceptrons

Consider a binary classification task (Figure 7.10) where the two classes are denoted
by +1 and −1. The previous section presented a technique to separate input data
by a linear boundary by making assumptions on the class conditional densities and
their covariances. In a generic setting, however, the problem is ill-posed and there
are infinitely many possible separating hyperplanes (Figure 7.10) characterised by
the equation

β0 + xTβ = 0 (7.2.68)

If x ∈ R2, this equation represents a line. In a generic case (x ∈ Rn) some properties
hold for all hyperplanes

• Since for any two points x(1) and x(2) lying on the hyperplane we have

(x(1) − x(2))Tβ = 0



7.2. LINEAR APPROACHES TO CLASSIFICATION 211

Figure 7.11: Bi-dimensional space (n = 2): vector β∗ normal to the hyperplane and
distance of a point from an hyperplane.

the vector normal to the hyperplane (Figure 7.11) is given by

β∗ =
β

‖β‖

• The signed distance of a point x to the hyperplane (Figure 7.11) is called the
geometric margin and is given by

β∗T (x− x0) =
xTβ − βxT0
‖β‖

=
1

‖β‖
(xTβ + β0)

A perceptron is a classifier that uses the sign of the linear combination h(x, β̂) =

β̂0 + β̂Tx to perform classification [89]. The class returned by a perceptron for a
given input xq is {

1 if β̂0 + xTq β̂ = β̂0 +
∑n
j=1 xqj β̂j > 0

−1 if β̂0 + xTq β̂ = β̂0 +
∑n
j=1 xqj β̂j < 0

In other terms the decision rule is given by

h(x) = sgn(β̂0 + xT β̂) (7.2.69)

For all well classified points in the training set the following relation holds

γi = yi(x
T
i β̂ + β̂0) > 0

where the quantity γi is called the functional margin of the pair 〈xi, yi〉 with respect
to the hyperplane (7.2.68). Misclassifications in the training set occur when{

yi = 1 but β̂0 + β̂Txi < 0

yi = −1 but β̂0 + β̂Txi > 0
⇔ yi(β̂0 + β̂Txi) < 0

The parametric identification step of a perceptron learning procedure aims at
finding the values {β̂, β̂0} that minimise the quantity

SSEemp(β̂, β̂0) = −
∑
i∈M

yi(x
T
i β̂ + β̂0)



212 CHAPTER 7. LINEAR APPROACHES

where M is the subset of misclassified points in the training set. Note that this
quantity is nonnegative and proportional to the distance of the misclassified points
to the hyperplane. Since the gradients are

∂SSEemp(β̂, β̂0)

∂β̂
= −

∑
i∈M

yixi,
∂SSEemp(β̂, β̂0)

∂β̂0

= −
∑
i∈M

yi

a batch gradient descent minimisation procedure (Section 6.6.2.3) or the online
version (Section 6.6.3) can be adopted. This procedure is guaranteed to converge
provided there exists a hyperplane that correctly classifies the data: this configura-
tion is called linearly separable.

Although the perceptron set the foundations for much of the following research
in machine learning, a number of problems with this algorithm have to be men-
tioned [89]:

• When the data are separable, there are many possible solutions, and which
one is found depends on the initialisation of the gradient method.

• When the data are not separable, the algorithm will not converge.

• Also for a separable problem the convergence of the gradient minimisation
can be very slow.

R script

The script Linear/hyperplane.R visualises the evolution of the separating hyper-
plane during the perceptron learning procedure. We invite the reader to run the
script for different numbers of points and different data distributions (e.g. by chang-
ing the mean and the variance of the 2D gaussians).

•

A possible solution to the separating hyperplane problem has been proposed by the
SVM technique.

7.2.3 Support vector machines

This technique relies on an optimisation approach to compute the separating hy-
perplane.

Let us define as geometric margin of a hyperplane with respect to a training
dataset the minimum of the geometric margin of the training points. Also, the
margin of a training set is the maximum geometric margin over all hyperplanes.
The hyperplane attaining such maximum is known as a maximal margin hyperplane.

The SVM approach [162] computes the maximal margin hyperplane for a train-
ing set. In other words, the SVM optimal separating hyperplane is the one which
separates the two classes by maximising the distance to the closest point from both
classes. This approach provides a unique solution to the separating hyperplane
problem and was shown to lead to good classification performance on real data.
The search for the optimal hyperplane is modelled as the optimisation problem

max
β,β0

C (7.2.70)

subject to
1

‖β‖
yi(x

T
i β + β0) ≥ C for i = 1, . . . , N (7.2.71)

where the constraint ensures that all the points are at least a distance C from the
decision boundary defined by β and β0. The SVM parametric identification step
seeks the largest C that satisfies the constraints and the associated parameters.
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Since the hyperplane (7.2.68) is equivalent to the original hyperplane where the
parameters β0 and β have been multiplied by a constant, we can set ‖β‖ = 1/C.
The maximisation problem can be reformulated in a minimisation form

min
β,β0

1

2
‖β‖2 (7.2.72)

subject to yi(x
T
i β + β0) ≥ 1 for i = 1, . . . , N (7.2.73)

where the constraints impose a margin around the linear decision of thickness 1/‖β‖.
This is a convex optimisation problem [33] where the primal Lagrangian is

LP (β, β0) =
1

2
‖β‖2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1] (7.2.74)

and αi ≥ 0 are the Lagrangian multipliers.
Setting the derivatives of LP (β, β0) wrt β and β0 to zero we obtain:

β =

N∑
i=1

αiyixi, 0 =

N∑
i=1

αiyi (7.2.75)

Substituting these in the primal form (7.2.74) we obtain

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk (7.2.76)

subject to αi ≥ 0.
The dual optimisation problem, where the number of parameters is equal to N ,

is

max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

}
=

max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiyk〈xi, xk〉

}
(7.2.77)

subject to

0 =

N∑
i=1

αiyi, αi ≥ 0, i = 1, . . . , N

where 〈xi, xk〉 is the inner product of xi and xk.
Note that the problem formulation requires the computation of all the inner

products 〈xi, xk〉, i = 1, . . . , N, k = 1, . . . , N . This boils down to the computation
of the Gram matrix

G = XXT (7.2.78)

If such matrix is positive definite, the optimisation (7.2.77) is an instance of quadratic
programming (Appendix C.3) and the solution is global and unique. For an inter-
esting least-squares version of SVM we refer to the work of [154].

Since the optimal solution must satisfy the complementarity Karush-Kuhn-
Tucker (KKT) condition [33] stating that the active constraints must have a zero
multiplier, it follows

αi[yi(x
T
i β + β0)− 1] = 0, i = 1, . . . , N

The above condition means that we are in either of these two situations:
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1. yi(x
T
i β + β0) = 1, i.e. the point xi is on the boundary of the margin, then

αi > 0;

2. yi(x
T
i β+β0) > 1, i.e. the point xi is not on the boundary of the margin, then

αi = 0.

The training points having an index i such that αi > 0 are called the support vectors.
Given the solution α and obtained β from (7.2.75), the term β0 is obtained by

β0 = −1

2
[βx∗(1) + βx∗(−1)]

where we denote by x∗(1) some (any) support vector belonging to the first class
and we denote by x∗(−1) a support vector belonging to the second class.

Now, the decision function can be written as

h(x, β, β0) = sign[xTβ + β0]

or, from (7.2.75), in the sparse form

h(x, β, β0) = sign[
∑

support vectors

yiαi〈xi, x〉+ β0] (7.2.79)

Sparseness is an attractive property of support vector machines: the classifier can
be expressed as a function of a limited number of points of the training set, the
so-called support vectors which lie on the boundaries. This means that in SVM
all the points far from the class boundary do not play a major role, unlike the
linear discriminant rule where the mean and the variance of the class distributions
determine the separating hyperplane (see Equation (7.2.63)). It can be shown, also,
that in the separable case

C =
1

‖β‖
=

1√∑N
i=1 αi

(7.2.80)

R script

The R script Linear/svm.R considers a binary classification problem. It generates
sets of separable data and builds a separating hyperplane by solving the prob-
lem (7.2.74). The training points belonging to the two classes (in red and blue),
the separating hyperplane, the boundary of the margin and the support vectors (in
black) are plotted for each training set (see Figure 7.12 ).

•

A modification of the formulation (7.2.70) occurs when we suppose that the
classes are nonlinearly separable. In this case the dual problem (7.2.77) is un-
bounded. The idea in [163] is to maximise the margin but tolerating that some
points will be misclassified. For each example 〈xi, yi〉 we define the slack variable
ξi and we relax the constraints (7.2.71) into

1

‖β‖
yi(x

T
i β + β0) ≥ C(1− ξi) for i = 1, . . . , N (7.2.81)

ξi ≥ 0 (7.2.82)

N∑
i=1

ξi ≤ γ (7.2.83)
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Figure 7.12: Maximal margin hyperplane for a binary classification task with the
support vectors in black.

The value ξi represents the proportional amount by which the quantity yi(x
T
i β+

β0) can be lower than C and the norm ‖ξ‖ measures how much the training set fails
to have a margin C. Note that since misclassifications occur when ξi > 1, the upper-
bound γ of

∑N
i=1 ξi represents the maximum number of allowed misclassifications

in the training set. It can be shown [89] that the maximisation (7.2.70) with the
above constraints can be put in the equivalent quadratic form

max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

}
(7.2.84)

subject to

0 =

N∑
i=1

αiyi, 0 ≤ αi ≤ γ, i = 1, . . . , N

The decision function takes again the form (7.2.79) where β0 is chosen so that
yih(xi) = 1 for any i such that 0 < αi < γ. The geometric margin takes the value

C =

(
N∑
k=1

αiαkyiykx
T
i xk

)−1/2

(7.2.85)

Note that the set of points for which the corresponding slack variables satisfy
ξi > 0 are also the points for which αi = γ.

R script

The R script Linear/svm.R solves a non-separable problem by setting the boolean
variable separable to FALSE. Figure 7.13 plots: the training points belonging to
the two classes (in red and blue), the separating hyperplane, the boundary of the
margin, the support vectors (in black), the points of the red class for which the
slack variable is positive (in yellow) and the points of the blue class for which the
slack variable is positive (in green).

•
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Figure 7.13: Maximal margin hyperplane for a non/separable binary classification
task for different values of C: support vectors are in black, the slack points of the
red class are in yellow and the slack points of the blue class are in green.

Once the value γ is fixed, the parametric identification in the SVM approach
boils down to a quadratic optimisation problem for which a large number of meth-
ods and numerical software exists. The value γ plays the role of capacity hyper-
parameter which bounds the total proportional amount by which classifications fall
on the wrong side of the margin. In practice, the choice of this parameter requires a
structural identification loop where the parameter γ is varied through a wide range
of values and assessed through a validation strategy.

7.3 Conclusion

In this chapter we considered input/output regression problems where the rela-
tionship between input and output is linear and classification problems where the
optimal decision boundaries are linear.

The advantage of linear models are numerous:

• the least-squares β̂ estimate can be expressed in an analytical form and can
be easily calculated through matrix computation,

• the statistical properties of the estimator can be easily defined,

• a recursive formulation for sequential updating are available.

Unfortunately, in real problems, it is extremely unlikely that the input and output
variables are linked by a linear relation. Moreover, the form of the relationship is
often unknown, and only a limited number of observations is available. For this
reason, machine learning proposed a number of nonlinear approaches to address
nonlinear tasks.

7.4 Exercises

1. Consider an input/output regression task where n = 1, E[y|x] = sin(x) and p(y|x) ∼
N (sin(x), 1). Let N = 100 be the size of the training set and consider a quadratic
loss function.

Let the class of hypothesis be hM (x) = α0 +
∑M
m=1 αmx

m.

1. Estimate the parameter by least-squares.
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2. Compute the error by leave-one-out and by using the PRESS statistic.

3. Plot the empirical error as a function of the degree M for M = 0, 1, . . . , 7.

4. Plot the leave-one-out error as a function of the degree M for M = 0, 1, . . . , 7.

2. Consider a univariate linear regression problem. Write a R script which, using
Monte Carlo simulation, validates the formula (7.1.7) for at least three regression
tasks differing in terms of

• parameters β0, β1,

• variance σ2,

• number N of observations.

3. Consider a univariate linear regression problem. Write a R script which, using
Monte Carlo simulation, validates the formula (7.1.8) for at least three regression
tasks differing in terms of

• parameters β0, β1,

• variance σ2,

• number N of observations.

4. Consider a univariate linear regression problem. Write a R script which, using Monte
Carlo simulation, shows that the least-squares estimates of β0 and β1 minimise the
quantity (7.1.10) for at least three regression tasks differing in terms of

• parameters β0, β1,

• variance σ2,

• number N of observations.

5. Consider a regression task with input x and output y. Suppose we observe the
following training set

X Y

0 .1 1
0 0.5

-0.3 1.2
0.2 1
0.4 0.5
0.1 0
-1 1.1

1. Fit a linear model to the dataset.

2. Trace the data and the linear regression function on graph paper.

3. Are the two variables positively or negatively correlated?

Hint:

A =

[
a11 a12

a12 a22

]
⇒ A−1 =

1

a11a22 − a2
12

[
a22 −a12

−a12 a11

]
Solution:

1. Once we set X =



1 0.1
1 0
1 −0.3
1 0.2
1 0.4
1 0.1
1 −1


we have

X ′X =

[
7.0 −0.50
−0.5 1.31

]
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and

β = (X ′X)−1X ′Y =

[
0.725
−0.456

]
2.

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

y

3. Since β̂1 < 0 the two variables are negatively correlated.

6. Let us consider the dependency where the conditional distribution of y is

y = 1− x+ x2 − x3 + w

and w ∼ N(0, σ2) and σ = 0.5. Suppose that x ∈ R takes the values seq(−1, 1, length.out = N)
(with N = 50).

Consider the family of regression models

h(m)(x) = β0 +

m∑
j=1

βjx
j

where p denote the number of weights of the polynomial model h(m) of degree m.

Let M̂ISE
(m)

emp denote the least-squares empirical risk and MISE the mean integrated
empirical risk. By using Monte Carlo simulation and for m = 0, . . . , 6

• plot E[M̂ISE
(m)

emp] as a function of p,

• plot MISE(m) as a function of p,

• plot the difference E[M̂ISE
(m)

emp]−MISE(m) as a function of p and compare it
with the theoretical result seen during the class.

For a single observed dataset:

• plot M̂ISE
(m)

emp as a function of the number of model parameters p,

• plot PSE as a function of p,

• discuss the relation between

arg min
m

M̂ISE
(m)

emp

and
arg min

m
PSE(m)

Solution: See the file Exercise2.pdf in the directory gbcode/exercises of the
companion R package gbcode (Appendix G).



Chapter 8

Nonlinear approaches

This chapter will present several algorithms proposed in machine learning literature
to deal with nonlinear regression and nonlinear classification tasks. Along the years
statisticians and machine learning researchers have proposed a number of nonlinear
approaches, with the aim of finding approximators able to combine high generalisa-
tion with effective learning procedures. The presentation of these techniques could
be organised according to several criteria and principles. In this chapter, we will
focus on the distinction between global and divide-and-conquer approaches.

A family of models traditionally used in supervised learning is the family of
global models which describes the relationship between the input and the output
values as a single analytical function over the whole input domain (Fig. 8.1). In
general, this makes sense when it is reasonable to believe that a physical-like law
describes the data over the whole set of operating conditions. Examples of well-
known global parametric models in the literature are the linear models discussed in
the previous chapter, generalised linear models and neural networks which will be
presented in Section 8.1.1.

A nice property of global modelling is that, even for huge datasets, the storage of
a parametric model requires a small amount of memory. Moreover, the evaluation
of the model requires a short program that can be executed in a reduced amount
of time. These features have undoubtedly contributed to the success of the global
approach in years when most computing systems imposed severe limitations on
users.

However, for a generic global model, the parametric identification (Section 5.2)
consists of a nonlinear optimisation problem (see Equation 5.2.7) which is not an-
alytically tractable due to the numerous local minima and for which only a sub-
optimal solution can be found through a slow iterative procedure. Similarly, the
problem of selecting the best model structure in a generic nonlinear case cannot be
handled in analytical form and requires time-consuming validation procedures.

For these reasons, alternatives to global modelling techniques, as the divide-
and-conquer approach, gained popularity in the modelling community. The divide-
and-conquer principle consists in attacking a complex problem by dividing it into
simpler problems whose solutions can be combined to yield a solution to the original
problem. This principle presents two main advantages. The first is that simpler
problems can be solved with simpler estimation techniques: in statistical language,
this means to adopt linear techniques, well studied and developed over the years.
The second is that the learning method can better adjust to the properties of the
available dataset. Training data are rarely distributed uniformly in the input space.
Whenever the distribution of patterns in the input space is uneven, a proper local
adjustment of the learning algorithm can significantly improve the overall perfor-
mance.

219
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Figure 8.1: A global model (solid line) which fits the training set (dotted points)
for a learning problem with one input variable (x-axis) and one output variable
(y-axis).

Figure 8.2: Function estimation (model induction + model evaluation) vs. value
estimation (direct prediction from data).

We will focus on two main instances of the divide-and-conquer principle: the
modular approach, which originated in the field of system identification, and the
local modelling approach, which was first proposed in the nonparametric statistical
literature.

Modular architectures are input/output approximators composed of a number
of modules which cover different regions of the input space. This is the idea of
operating regimes which propose a partitioning of the operating range of the system
as a more effective way to solve modelling problems (Section 8.1.3).

Although these architectures are a modular combination of local models, their
learning procedure is still performed on the basis of the whole dataset. Hence,
learning in modular architectures remains a functional estimation problem, with the
advantage that the parametric identification can be made simpler by the adoption
of local linear modules. However, in terms of structural identification, the problem
is still nonlinear and requires the same procedures used for generic global models.

A second example of divide-and-conquer methods are local modelling techniques
(Section 8.1.11), which turn the problem of function estimation in a problem of value
estimation. The goal is not to model the whole statistical phenomenon but to return
the best output for a given test input hereafter called the query. The motivation is
simple: why should the problem of estimating the values of an unknown function at
given points of interest be solved in two stages? Global modelling techniques first
estimate the function (induction) and second estimate the values of the function
using the estimated function (deduction). In this two-stage scheme, one actually
tries to solve a relatively simple problem (estimating the values of a function at
given points of interest) by first solving, as an intermediate problem, a much more
difficult one (estimating the function).

Local modelling techniques take an alternative approach, defined as transduc-
tion by Vapnik [162] (Fig. 8.2). They focus on approximating the function only
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Figure 8.3: Local modelling of the input/output relationship between the input
variable x and the output variable y, on the basis of a finite set of observations
(dots). The value of the variable y for x = q is returned by a linear model (solid
line) which fits the training points in a neighbourhood of the query point (bigger
dots).

in the neighbourhood of the point to be predicted. This approach requires to keep
in memory the dataset for each prediction, instead of discarding it as in the global
modelling case. At the same time, local modelling requires only simple approxi-
mators, e.g. constant and/or linear, to model the dataset in a neighbourhood of
the query point. An example of local linear modelling in the case of a single-input
single-output mapping is presented in Fig. 8.3.

Many names have been used in the past to label variations of the local modelling
approach: memory-based reasoning [150], case-based reasoning [109], local weighted
regression [42], nearest neighbour [45], just-in-time [47], lazy learning [5], exemplar-
based, instance based [4],... These approaches are also called nonparametric in the
literature [87, 148], since they relax the assumptions on the form of a regression
function, and let the data search for a suitable function that describes the available
data well.

In the following, we will present in detail some machine learning techniques for
nonlinear regression and classification.

8.1 Nonlinear regression

A general way of representing the unknown input/output relation in a regression
setting is the regression plus noise form (5.4.21) where f(·) is a deterministic func-
tion and the term w represents the noise or random error. It is typically assumed
that w is independent of x and E[w] = 0. Suppose that we collect a training
set {〈xi, yi〉 : i = 1, . . . , N} with xi = [xi1, . . . , xin]T , generated according to the
model (5.4.21). The goal of a learning procedure is to find a model h(x) which is
able to give a good approximation of the unknown function f(x).

Example

Consider an input/output mapping represented by the Dopler function

f(x) = 20
√
x(1− x) sin(2π

1.05

x+ 0.05
) (8.1.1)

distorted by additive Gaussian noise w with unit variance.
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Figure 8.4: Training set obtained by sampling uniformly in the input domain of a
Dopler function distorted with Gaussian noise.

The training set is made of N = 2000 points obtained by sampling the input do-
main X = [0.12, 1] through a uniform random distribution (Fig. 8.4). This stochas-
tic dependency and the related training dataset (see R script Nonlinear/dopler.R)
will be used to assess the performance of the techniques we are going to present.

•

8.1.1 Artificial neural networks

Artificial neural networks (ANN) (aka neural nets) are parallel, distributed infor-
mation processing computational models which draw their inspiration from neurons
in the brain. However, one of the most important trends in recent neural computing
has been to move away from a biologically inspired interpretation of neural networks
to a more rigorous and statistically founded interpretation based on results deriving
from statistical pattern recognition theory.

The main class of neural network used in supervised learning for classification
and regression is the feed-forward network, aka as multi-layer perceptron (MLP).
Feed-forward ANNs (FNNs) have been applied to a wide range of prediction tasks
in such diverse fields as speech recognition, financial prediction, image compression,
adaptive industrial control.

8.1.1.1 Feed-forward architecture

Feed-forward NNs have a layered architecture, with each layer comprising one or
simpler processing units called artificial neurons or nodes (Figure 8.5). Each node
is connected to one or more other nodes by real-valued weights (in the following
we will refer to them as parameters) but not to nodes in the same layer. All FNN
have an input layer and an output layer. FNNs are generally implemented with an
additional node, called the bias1 unit, in all layers except the output layer. This

1Note that this has nothing to do with the estimator bias concept. In neural network literature,
bias is used to denote the intercept term
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Figure 8.5: Two-layer feed-forward NN

node plays the role of the intercept term β0 in linear models.
For simplicity, henceforth, we will consider only FNN with one single output.

Let

• n be the number of inputs,

• L the number of layers,

• H(l) the number of hidden units of the lth layer (l = 1, . . . , L) of the FNN,

• w(l)
kv denote the weight of the link connecting the kth node in the l − 1 layer

and the vth node in the l layer,

• z(l)
v , v = 1, . . . ,H(l) the output of the vth hidden node of the lth layer,

• z(l)
0 denote the bias for the l, l = 1, . . . , L layer.

• Let H(0) = n and z
(0)
v = xv, v = 0, . . . , n.

For l ≥ 1 the output of the vth, v = 1, . . . ,H(l), hidden unit of the lth layer,
is obtained by first forming a weighted linear combination of the H(l−1) outputs of
the lower level

a(l)
v =

H(l−1)∑
k=1

w
(l)
kvz

(l−1)
k + w

(l)
0v z

(l−1)
0 , v = 1, . . . ,H(l)

and then by transforming the sum using an activation function to give

z(l)
v = g(l)(a(l)

v ), v = 1, . . . ,H(l)

The activation function g(l)(·) is typically a nonlinear transformation like the
logistic or sigmoid function

g(l)(z) =
1

1 + e−z
(8.1.2)
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For L = 2 (i.e. single hidden layer or two-layer feed-forward NN), the in-
put/output relation is given by

ŷ = h(x, αN ) = g(2)(a
(2)
1 ) = g(2)

(
H∑
k=1

w
(2)
k1 zk + w

(2)
01 z0

)

where

zk = g(1)

 n∑
j=1

w
(1)
jk xj + w

(1)
0k x0

 , k = 1, . . . ,H

Note that if g(1)(·) and g(2)(·) are linear mappings, this functional form becomes
linear.

Once given the number of inputs and the form of the function g(·) two are the
parameters which remain to be chosen: the value of weights w(l), l = 1, 2 and the
number of hidden nodes H. Note that the set of weights of an FNN represents
the set of parameters αN introduced in Section 5.1 when the hypothesis function
h(·) is modelled by a FNN. The calibration procedure of the weights on the basis
of a training dataset represents the parametric identification procedure in neural
networks. This procedure is normally carried out by a back-propagation algorithm
which will be discussed in the following section.

The number H of hidden nodes represents the complexity s in Equation (5.8.49).
By increasing the value H, we increase the class of input/output functions that can
be represented by the FNN. In other terms, the choice of the number of hidden
nodes affects the representation power of the FNN approximator and constitutes
the structural identification procedure in FNN (Section 8.1.1.3) .

8.1.1.2 Back-propagation

Back-propagation is an algorithm which, once the number of hidden nodes H is
given, estimates the weights αN = {w(l), l = 1, 2} on the basis of the training set
DN . It is a gradient-based algorithm which aims to minimise the non-convex cost
function

SSEemp(αN ) =

N∑
i=1

(yi − ŷi)2 =

N∑
i=1

(yi − h(xi, αN ))2

where αN = {w(l), l = 1, 2} is the set of weights.
The back-propagation algorithm exploits the network structure and the differen-

tiable nature of the activation functions in order to compute the gradient recursively.
The simplest (and least effective) back-prop algorithm is an iterative gradient

descent which is based on the iterative formula

αN (k + 1) = αN (k)− η ∂SSEemp(αN (k))

∂αN (k)
(8.1.3)

where αN (k) is the weight vector at the kth iteration and η is the learning rate
which indicates the relative size of the change in weights.

The weights are initialised with random values and are changed in a direction
that will reduce the error. Some convergence criterion is used to terminate the
algorithm. This method is known to be inefficient since many steps are needed to
reach a stationary point, and no monotone decrease of SSEemp is guaranteed. More
effective versions of the algorithm are based on the Levenberg-Marquardt algorithm
(Section 6.6.2.6). Note that this algorithm presents all the typical drawbacks of the
gradient-based procedures discussed in Section 6.6.4, like slow convergence, local
minima convergence, sensitivity to the weights initialisation.
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Figure 8.6: Single-input single-output neural network with one hidden layer, two
hidden nodes and no bias units.

In order to better illustrate how the derivatives are computed in (8.1.3), let us
consider a simple single-input (i.e. n = 1) single-output neural network with one
hidden layer, two hidden nodes and no bias units (Figure 8.6). Since

a1(x) = w
(2)
11 z1 + w

(2)
21 z2

the FNN predictor takes the form

ŷ(x) = h(x, αN ) = g(a1(x)) = g(w
(2)
11 z1 + w

(2)
21 z2) = g(w

(2)
11 g(w

(1)
11 x) + w

(2)
21 g(w

(1)
12 x))

where αN = [w
(1)
11 , w

(1)
12 , w

(2)
11 , w

(2)
21 ] The backprop algorithm needs the derivatives of

SSEemp w.r.t. to each weight w ∈ αN . Since for each w ∈ αN

∂SSEemp

∂w
= −2

N∑
i=1

(yi − ŷ(xi))
∂ŷ(xi)

∂w

and the terms (yi − ŷ(xi)) are easy to be computed, we focus on ∂ŷ
∂w .

As far as the weights {w(2)
11 , w

(2)
21 } of the hidden/output layer are concerned, we

have
∂ŷ(x)

∂w
(2)
v1

=
∂g

∂a
(2)
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(2)
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∂w
(2)
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(2)
1 (x))zv(x), v = 1, . . . , 2 (8.1.4)

where

g′(z) =
e−z

(1 + e−z)2

As far as the weights {w(1)
11 , w

(1)
12 } of the input/hidden layer
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∂w
(1)
1v

= g′(a
(2)
1 (x))w

(2)
v1 g

′(a(1)
v (x))x (8.1.5)
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Figure 8.7: Neural network fitting with s = 2 hidden nodes. The red continuous
line represents the neural network estimation of the Dopler function.

where the term g′(a2
1(x)) has been already obtained during the computation of (8.1.4).

The computation of the derivatives with respect to the weights of the lower layers
relies on terms which have been used in the computation of the derivatives with
respect to the weights of the upper layers. In other terms, there is a sort of back-
propagation of numerical terms from the upper layer to the lower layers that justifies
the name of the procedure.

R example

Tensorflow [1] is an open-source library developed by Google2 which had a great
success in recent years as flexible environment for building and training of neural
network architectures. In particular this library provides automatic differentiation
functionalities to speed up the backpropagation implementation.

The script Nonlinear/tf nn.R uses the R tensorflow package (wrapper over
the python library) to compute the derivatives (8.1.5) and (8.1.4) for the network
in Figure 8.6 and checks that the TensorFlow result coincides with the one derived
analytically.

•

R example

The FNN learning algorithm for a single-hidden layer architecture is implemented
by the R library nnet. The script Nonlinear/nnet.R shows the prediction accuracy
for different number of hidden nodes (Figure 8.7 and Figure 8.8).

•
2https://www.tensorflow.org

https://www.tensorflow.org
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Figure 8.8: Neural network fitting with s = 7 hidden nodes. The continuous red
line represents the neural network estimation of the Dopler function.

8.1.1.3 Approximation properties

Let us consider a two-layer FNN with sigmoidal hidden units. This has proven to
be an important class of network for practical applications. It can be shown that
such networks can approximate arbitrarily well any functional (one-one or many-
one) continuous mapping from one finite-dimensional space to another, provided
the number H of hidden units is sufficiently large. Note that although this result
is remarkable, it is of no practical use. No indication is given about the number of
hidden nodes to choose for a finite number of observations and a generic nonlinear
mapping.

In practice, the choice of the number of hidden nodes requires a structural identi-
fication procedure (Section 6.8) which assesses and compares several different FNN
architectures before choosing the ones expected to be the closest to the optimum.
Cross-validation techniques or regularisation strategies based on complexity-based
criteria (e.g. the weight-decay in Section 6.8.2.5) are commonly used for this pur-
pose.

Example

This example presents the risk of overfitting when the structural identification of
a neural network is carried out on the basis of the empirical risk and not on less
biased estimates of the generalisation error.

Consider a dataset DN = {xi, yi}, i = 1, . . . , N where N = 50 and

x ∈ N

[0, 0, 0],

 1 0 0
0 1 0
0 0 1


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is a 3-dimensional vector. Suppose that y is linked to x by the input/output rela-
tionship

y = x2
1 + 4 log(|x2|) + 5x3

where xi is the ith component of the vector x. Consider as nonlinear model a single-
hidden-layer neural network (implemented by the R package nnet) with s = 15
hidden neurons. We want to estimate the prediction accuracy on a new i.i.d dataset
of Nts = 50 examples. Let us train the neural network on the whole training set by
using the R script Nonlinear/cv.R. The empirical prediction MISE error is

M̂ISEemp =
1

N

N∑
i=1

(yi − h(xi, αN ))2 = 1.6 ∗ 10−6

where αN is obtained by the parametric identification step. However, if we test
h(·, αN ) on the test set we obtain

M̂ISEts =
1

Nts

Nts∑
i=1

(yi − h(xi, αN ))2 = 22.41

This neural network is seriously overfitting the dataset. The empirical error is a
very bad estimate of the MISE.

Now we perform a K-fold cross-validation in order to have a better estimate of
MISE, where K = 10. The K = 10 cross-validated estimate of MISE is

M̂ISECV = 24.84

This figure is a much more reliable estimation of the prediction accuracy.
The leave-one-out estimate K = N = 50 is

M̂ISEloo = 19.47

It follows that the cross-validated estimate could be used to select a more ap-
propriate number of hidden neurons.

•

8.1.2 From shallow to deep learning architectures

Until 2006, FNNs with more than two layers have been rarely used in literature
because of poor training and large generalisation errors. The common belief was
that the solutions returned by deep neural networks were worse solutions than the
ones obtained with shallower networks. This was mainly attributed to two aspects:
i) gradient-based training of deep supervised FNN gets stuck in local minima or
plateaus, and ii) the higher the number of layers in a neural network, the smaller
the impact of the back-propagation on the first layers.

However, an incredible resurgence of the domain occurred from 2006 on when
some teams (notably the Bengio team in Montreal, the Hinton team in Toronto and
the Le Cun team in Facebook)3 were able to show that some adaptation of the FNN
algorithm could bring a remedy to the above-mentioned problems and lead to major
accuracy improvements with respect to other learning machines. In particular deep
architectures (containing up to hundreds of layers) showed a number of advantages:

• some highly nonlinear functions can be represented much more compactly
with deep architectures than with shallow ones,

3Yoshua Bengio, Geoffrey Hinton, and Yann LeCun were awarded the 2018 Turing Award,
known as the Nobel Prize of computing
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• the XOR parity function for n-bit inputs4 can be coded by a feed-forward
neural network with O(log n) hidden layers and O(n), neurons, while a feed-
forward neural network with only one hidden layer needs an exponential num-
ber of the same neurons to perform the same task,

• DL allows automatic generation and extraction of new features in large di-
mensional tasks with spatial dependency and location invariance,

• DL allows easy management of datasets where inputs and outputs are stored
in tensors (multidimensional matrices),

• DL relies on the learning of successive layers of increasingly meaningful rep-
resentations of input data (layered representation learning) and is a powerful
automatic alternative to time-consuming human crafted feature engineering,

• portions of DL pre-trained networks may be reused for similar, yet different,
tasks (transfer learning) or calibrated in online learning pipelines (continuous
learning),

• iterative gradient optimisation (Section 6.6.3) is a very effective manner of
ingesting a huge amount of data in large networks.

• new activation functions and weight-initialisation schemes (e.g. layer-wise
pretraining) improve the training process.

Also, new network architectures were proposed, like auto-encoders or convolu-
tional networks. An auto-encoder is a multi-input multi-output neural network that
maps its input to itself. It has a hidden layer that describes a code used to repre-
sent the input and is composed of two parts: an encoder function and a decoder
that produces a reconstruction. They can be used for dimensionality reduction or
compression (if the number of hidden nodes is smaller than the number of inputs).

Convolutional networks are biologically inspired architectures imitating the pro-
cessing of cortical cells. They are ideal for taking into consideration local and spatial
correlation and consist of a combination of convolution, pooling and normalisation
steps applied to inputs taking the generic form of tensors. The convolution phase
applies a number of filters with shared weights to the same image. It ensures trans-
lation invariance since the weights depend on spatial separation and not on absolute
positions. Pooling is a way to take large images and shrink them down while pre-
serving the most important information in them. This step allows the creation
of new features as the combination of previous level features. The normalisation
ensures that every negative value is set to zero.

Those works had such a major impact on theoretical and applied research that
nowadays, deep learning is a de facto synonymous of the entire machine learning
domain and more generally of AI. This comeback has been supported by a number
of headlines in the news like the success of a deep learning solution in the ImageNet
Large-Scale Visual Recognition Competition (2012): (bringing down the state-of-
the-art error rate from 26.1% to 15.3%) or the DL program AlphaGo, developed
by the company DeepMind, beating the no.1 human GO player. Other impres-
sive applications of deep learning are near-human-level speech recognition, near-
human-level handwriting transcription, autonomous cars (e.g. traffic sign recog-
nition, pedestrian detection), image segmentation (e.g. face detection), analysis
of particle accelerator data in physics, prediction of mutation effects in bioinfor-
matics and machine translation (LSTM model sequence-to-sequence relationships).

4This is a canonical challenge in classification where the target function is a boolean function
whose value is one if and only if the n-dimensional input vector has an odd number of ones.
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The breakthroughs of DL in the AI community have been acknowledged by the
attribution of the 2019 ACM Turing prize to Bengio, Hinton and Le Cun.

The domain is so large and rich that the most honest recommendation of the
author is to refer the reader, for more details, to seminal books [80] and articles [110]
authored by the pioneers in this domain. Nevertheless, we would like to make a
number of pedagogical considerations about the role of deep learning with respect
to other learning machines:

• DL models are not faithful models of the brain.

• the astonishingly success of DL makes of it a privileged approach in recent
years, but definitely, it should not be considered a machine learning panacea.

• DL, like all machine learning techniques, relies on a number of hyper-parameters
which affect its capacity, its bias/variance trade-off and the expected gener-
alisation power. The setting of those parameters has a major impact on the
generalisation power. An important factor of the recent success of deep net-
works learning is the effective integration of computational strategies already
adopted in other learning approaches, like regularisation, averaging, resam-
pling.

• the success of DL, though fulgurant, if often restricted to some specific per-
ceptual tasks, e.g. convolutional networks have been explicitly designed to
process data that come in the form of multiple arrays (1D for signals and
sequences, including language; 2D for images or audio spectrograms; and 3D
for video or volumetric images.)

• there is no evidence that representation learning is by default a better strat-
egy than feature engineering: it is surely less biased but very probably more
variant.

• DL is particularly successful in tasks where it is possible to collect (and label)
huge amounts of examples: nevertheless, there are still a number of chal-
lenging tasks where the number of examples is typically low or scarce (e.g.
bioinformatics or tie series forecasting),

• the success of DL has been amplified by the advent of fast parallel graphics
processing units (GPUs), tensor processing units (TPU) and related libraries
(e.g. TensorFlow, Keras, PyTorch) that are convenient to program and allow
researchers to train networks 10 or 20 times faster.

• any assumption of a priori superiority of DL over other techniques for a given
learning task is more often due to hype consideration than to a scientific
attitude that should instead rely on the validation of a number of alternative
strategies and the pondering of different criteria (accuracy, computational
cost, energy consumption, interpretability).

Exercise

The script Nonlinear/keras.regr.R compares a Keras [41] implementation of a
DNN and a Random Forest (Section 9.4) in a very simple nonlinear regression task
where a single input out of n is informative about the target. The default setting of
the DNN is very disappointing in terms of NMSE accuracy (6.10.38) with respect
to the Random Forest. We invite the reader to spend some time performing DNN
model selection (e.g. by changing the architecture, tuning the number of layers
and/or the number of nodes per layers) or increasing the amount of training points
to bring the DNN accuracy closer to the RF one. Is that easy? Is that fast? What
is your opinion?

•
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8.1.3 From global modelling to divide-and-conquer

Neural networks are a typical example of global modelling. Global models have
essentially two main properties. First, they make the assumption that the relation-
ship between the inputs and the output values can be described by an analytical
function over the whole input domain. Second, they solve the problem of learning
as a problem of function estimation: given a set of data, they extract the hypothesis
which is expected to best approximate the whole data distribution (Chapter 5).

The divide-and-conquer paradigm originates from the idea of relaxing the global
modelling assumptions. It attacks a complex problem by dividing it into simpler
problems whose solutions can be combined to yield a solution to the original prob-
lem. This principle presents two main advantages. The first is that simpler problems
can be solved with simpler estimation techniques; in statistics, this means to adopt
linear techniques, well studied and developed over the years. The second is that the
learning method can better adjust to the properties of the available dataset.

The divide-and-conquer idea evolved in two different paradigms: the modular
architectures and the local modelling approach.

Modular techniques replace a global model with a modular architecture where
the modules cover different parts of the input space. This is the idea of operating
regimes which assume a partitioning of the operating range of the system in order
to solve modelling and control problems [100]. The following sections will introduce
some examples of modular techniques.

8.1.4 Classification and Regression Trees

The use of tree-based classification and regression dates back to the work of Morgan
and Sonquist in 1963. Since then, methods of tree induction from samples have
been an active topic in the machine learning and the statistics community. In
machine learning the most representative methods of decision-tree induction are
the ID3 [138] and the C4 [139] algorithms. Similar techniques were introduced
in statistics by Breiman et al. [35], whose methodology is often referred to as the
CART (Classification and Regression Trees) algorithm.

A decision tree (see Fig. 8.9) partitions the input space into mutually exclusive
regions, each of which is assigned a procedure to characterise its data points (see
Fig. 8.10)

The nodes of a decision tree can be classified in internal nodes and terminal
nodes. An internal node is a decision-making unit that evaluates a decision function
to determine which child node to visit next. A terminal node or leaf has no child
nodes and is associated with one of the partitions of the input space. Note that
each terminal node has a unique path that leads from the root to itself.

In classification trees each terminal node contains a label that indicates the
class for the associated input region. In regression trees the terminal node con-
tains a model that specifies the input/output mapping for the corresponding input
partition.

Hereafter we will focus only on the regression case. Let m be the number of
leaves and hj(·, αj) the input/output model associated with the jth leaf. Once a
prediction in a query point q is required, the output evaluation proceeds as follows.
First, the query is presented to the root node of the decision tree; according to the
associated decision function, the tree will branch to one of the root’s children. The
procedure is iterated recursively until a leaf is reached, and an input/output model
is selected. The returned output will be the value hj(q, αj).

Consider for example the regression trees in Fig. 8.9, and a query point
q = (xq, yq) so that xq < x1 and yq > y1. The predicted output will be
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Figure 8.9: A binary decision tree.

Figure 8.10: Input space partitioning induced on the input space by the binary tree
in Fig. 8.9
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yq = h2(q, α2) where α2 is the vector of parameters of the model localised in region
R2.

When the terminal nodes contain only constant models, the input/output map-
ping results in a combination of several constant-height planes put together with
crisp boundaries. In the case of linear terms, the resulting approximator is instead
a piecewise linear model.

8.1.4.1 Learning in Regression Trees

8.1.4.2 Parameter identification

A regression tree partitions the input space into mutually exclusive regions. In terms
of parametric identification, this requires a two-step procedure. First, the training
dataset is partitioned into m disjoint sets DNj ; second, a local model hj(·, αj) is
fitted to each subset DNj . The nature of the local model determines the kind of
procedure (linear or nonlinear) to be adopted for the parameter identification (see
Section 6.6).

R implementation

A regression tree with constant local models is implemented by the R library tree.
The script Nonlinear/tree.R shows the prediction accuracy for different minimum
number of observations per leaf. (Figure 8.11 and Figure 8.12).

•

8.1.4.3 Structural identification

This section presents a summary of the CART procedure [35] for structural identifi-
cation in binary regression trees. In this case the structural identification procedure
addresses the problem of choosing the optimal partitioning of the input space.

To construct an appropriate decision tree, CART first grows the tree on the
basis of the training set, and then prunes the tree back based on a minimum cost-
complexity principle. This is an example of the exploratory approach to model
generation described in Section 6.8.1.

Let us see in detail the two steps of the procedure:

Tree growing. CART makes a succession of splits that partition the training data
into disjoint subsets. Starting from the root node that contains the whole
dataset, an exhaustive search is performed to find the split that best reduces
a certain cost function.

Let us consider a certain node t and let D(t) be the corresponding subset of
the original DN . Consider the empirical error of the local model fitting the
N(t) data contained in the node t :

Remp(t) = min
αt

N(t)∑
i=1

L(yi, ht(xi, αt)) (8.1.6)

For any possible split s of node t into the two children tr and tl, we define the
quantity

∆E(s, t) = Remp(t)− (Remp(tl) +Remp(tr))

with N(tr) +N(tl) = N(t) (8.1.7)
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Figure 8.11: Regression tree fitting with a minimum number of points per leaf equal
to s = 7.

Figure 8.12: Regression tree fitting with a minimum number of points per leaf equal
to s = 30.
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that represents the change in the empirical error due to a further partition of
the dataset. The best split is the one that maximises the decrease ∆E

s∗ = arg max
s

∆E(s, t) (8.1.8)

Once the best split is attained, the dataset is partitioned into the two disjoint
subsets of length N(tr) and N(tl), respectively. The same method is recur-
sively applied to all the leaves. The procedure terminates either when the
error measure associated with a node falls below a certain tolerance level, or
when the error reduction ∆E resulting from further splitting does not exceed
a threshold value.

The tree returned by the growing procedure is typically too large and presents
a serious risk of overfitting the dataset (Section 5.6). For that reason, a
pruning procedure is often adopted.

Tree pruning. Consider a fully expanded tree Tmax characterised by L terminal
nodes.

Let us introduce a complexity-based measure of the tree performance

Rλ(T ) = Remp(T ) + λ|T | (8.1.9)

where λ is a parameter that accounts for the tree’s complexity and |T | is the
number of terminal nodes of the tree T . For a fixed λ we define with T (λ)
the tree structure which minimises the quantity (8.1.9).

The parameter λ is gradually increased in order to generate a sequence of tree
configurations with decreasing complexity

TL = Tmax ⊃ TL−1 ⊃ · · · ⊃ T2 ⊃ T1 (8.1.10)

where Ti has i terminal nodes. In practice, this requires a sequence of shrinking
steps where for each step we select the value of λ leading from a tree to a tree
of inferior complexity. When we have a tree T the next inferior tree is found
by computing for each admissible subtree Tt ⊂ T the value λt which makes of
it the minimiser of (8.1.9). For a generic subtree Tt this value must satisfy

Rλt(Tt) ≤ Rλt(T ) (8.1.11)

that is

Remp(Tt) + λt|Tt| ≤ Remp(T ) + λt|T |

which means

λt ≥
Remp(T )−Remp(Tt)

|T | − |Tt|
(8.1.12)

Hence, λt =
Remp(T )−Remp(Tt)

|T |−|Tt| makes of Tt the minimising tree. Therefore we

choose among all the admissible subtrees Tt the one with the smallest right-
hand term in Eq. (8.1.12). This implies a minimal increase in λ toward the
next minimising tree.

At the end of the shrinking process, we have a sequence of candidate trees
that have to be properly assessed to perform the structural selection. As
far as validation is concerned, either a procedure of cross-validation or of
independent testing can be used. The final structure is then obtained through
one of the selection procedures described in Section 6.8.3.
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Regression trees are a very easy-to-interpret representation of a nonlinear in-
put/output mapping. However, these methods are characterised by a rough dis-
continuity at the decision boundaries, which might bring undesired effects to the
overall generalisation. Dividing the data by partitioning the input space shows typ-
ically small estimator bias but at the cost of increased variance. This is particularly
problematic in high-dimensional spaces where data become sparse. One response to
the problem is the adoption of simple local models (e.g. constant or linear). These
simple functions minimise the variance at the cost of an increased bias.

Another trick is to make use of soft splits, allowing data to lie simultaneously
in multiple regions. This is the approach taken by BFN.

8.1.5 Basis Function Networks

Basis Function Networks (BFN) are a family of modular architectures which are
described by a linear basis expansion, i.e. the weighted linear combination

y =

m∑
j=1

ρj(x)hj (8.1.13)

where the weights are returned by the activation of m local nonlinear basis functions
ρj and where the term hj is the output of a generic module of the architecture.

The basis or activation function ρj is a function

ρj : X → [0, 1] (8.1.14)

usually designed so that its value monotonically decreases towards zero as the input
point moves away from its centre cj .

The basis function idea arose almost at the same time in different fields and
led to similar approaches, often denoted with different names. Examples are the
Radial Basis Function in machine learning, the Local Model Networks in system
identification and the Neuro-Fuzzy Inference Systems in fuzzy logic. These three
architectures are described in the following sections.

8.1.6 Radial Basis Functions

A well-known example of basis functions are the Radial Basis Functions (RBF) [136].
Each basis function in RBF takes the form of a kernel

ρj = K(x, cj , Bj) (8.1.15)

where cj is the centre of the kernel and Bj is the bandwidth. An example of kernel
functions is illustrated in Fig. 8.13. Other examples of kernel functions are available
in Appendix F.1. Once we define with ηj the set {cj , Bj} of parameters of the basis
function, we have

ρj = ρj(·, ηj) (8.1.16)

If the basis ρj have localised receptive fields and a limited degree of overlap
with their neighbours, the weights hj in Eq. (8.1.13) can be interpreted as locally
piecewise constant models, whose validity for a given input is indicated by the
corresponding activation function for a given input.

8.1.7 Local Model Networks

Local Model Networks (LMN) were first introduced by Johansen and Foss [100].
They are a generalised form of Basis Function Network in the sense that the constant
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Figure 8.13: A Gaussian kernel function in a two-dimensional input space.

weights hj associated with the basis functions are replaced by local models hj(·, αj).
The typical form of a LMN is then

y =

m∑
j=1

ρj(x, ηj)hj(x, αj) (8.1.17)

where the ρj are constrained to satisfy

m∑
j=1

ρj(x, ηj) = 1 ∀x ∈ X (8.1.18)

This means that the basis functions form a partition of unity [122]. This ensures
that every point in the input space has equal weight, so that any variation in the
output over the input space is due only to the models hj .

The smooth combination provided by the LMN formalism enables the repre-
sentation of complex nonlinear mappings on the basis of simpler modules. See the
example in Fig. 8.14 which shows the combination in a two-dimensional input space
of three local linear models whose validity regions is represented by Gaussian basis
functions.

In general, the local models hj(·, α) in Eq. (8.1.17) can be of any form: linear,
nonlinear, physical models or black-box parametric models.

Note that, in the case of local linear models

hj(x, αj) =

n∑
i=1

ajixi + bj (8.1.19)

where the vector of parameters of the local model is αj = [aj1, . . . , ajn, bj ] and xi
is the ith term of the vector x, a LMN architecture returns one further information
about the input/output phenomenon: the local linear approximation hlin of the
input/output mapping about a generic point x

hlin(x) =

m∑
j=1

ρj(x, ηj)

(
n∑
i=1

ajixi + bj

)
(8.1.20)

8.1.8 Neuro-Fuzzy Inference Systems

Fuzzy modelling consists of describing relationships between variables by means of
if-then rules, such as

If x is high then y is low
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(a) (b)

(c)

Figure 8.14: A Local Model Network with m = 3 local models: the nonlinear
input/output approximator in (c) is obtained by combining the three local linear
models in (a) according to the three basis functions in (b).
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where the linguistic terms, as high and low, are described by fuzzy sets [174].
The first part of each rule is called the antecedent while the second part is called

the consequent. Depending on the particular form of the consequent proposition,
different types of rule-based fuzzy models can be distinguished [11].

Here we will focus on the fuzzy architecture for nonlinear modelling introduced
by Takagi and Sugeno [155]. A Takagi-Sugeno (TS) fuzzy inference system is a set
of m fuzzy if-then rules having the form:

If x1 is A11 and x2 is A21 . . . and xn is An1 then y = h1(x1, x2, ..., xn, α1)

. . .

If x1 is A1m and x2 is A2m . . . and xn is Anm then y = hm(x1, x2, ..., xn, αm)

(8.1.21)
The antecedent is defined as a fuzzy AND proposition where Akj is a fuzzy set on
the kth premise variable defined by the membership function µkj : < → [0, 1]. The
consequent is a function hj(·, αj), j = 1, . . . ,m, of the input vector [x1, x2, . . . , xn].

By means of the fuzzy sets Akj , the input domain is softly partitioned into m
regions where the mapping is locally approximated by the models hj(·, αj).

If the TS inference system uses the weighted mean criterion to combine the local
representations, the model output for a generic query x is computed as

y =

∑m
j=1 µj(x)hj(x, αj)∑m

j=1 µj(x)
(8.1.22)

where µj is the degree of fulfilment of the jth rule, commonly obtained by

µj(x) =

n∏
k=1

µkj(x)

This formulation makes of a TS fuzzy system a particular example of LMN
where

ρj(x) =
µj(x)∑m
j=1 µj(x)

(8.1.23)

is the basis function and hj(·, αj) is the local model of the LMN architecture.
In a conventional fuzzy approach, the membership functions and the consequent

models are fixed by the model designer according to a priori knowledge. In many
cases, this knowledge is not available; however a set of input/output data has been
observed. Once we put the components of the fuzzy system (memberships and
consequent models) in a parametric form, the TS inference system becomes a para-
metric model which can be tuned by a learning procedure. In this case, the fuzzy
system turns into a Neuro-Fuzzy approximator [97]. For a thorough introduction to
Neuro-Fuzzy architecture see [98] and the references therein. Further work on this
subject was presented by the author in [21, 22, 30, 20].

8.1.9 Learning in Basis Function Networks

Given the strong similarities between the three instances of BFN discussed above,
our discussion on the BFN learning procedure does not distinguish between these
approaches.

The learning process in BFN is divided in structural (see Section 6.8) and para-
metric identification (see Section 6.6). The structural identification aims to find
the optimal number and shape of the basis functions ρj(·). Once the structure of
the network is defined, the parametric identification searches for the optimal set of
parameters ηj of the basis functions (e.g. centre and width in the Gaussian case)
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and the optimal set of parameters αj of the local models (e.g. linear coefficients in
the case of local linear models).

Hence, the classes of parameters to be identified are two: the parameters of the
basis function and the parameters of the local model.

8.1.9.1 Parametric identification: basis functions

The relationship between the model output and the parameters ηj of the basis func-
tion is typically nonlinear, hence, methods for nonlinear optimisation are currently
employed. A typical approach consists in decomposing the identification procedure
into two steps: first, an initialisation step, which computes the initial location and
width of the basis functions, then a nonlinear optimisation procedure which uses

the outcome η
(0)
j of the previous step as initial value.

Since the methods for nonlinear optimisation have already been discussed in
Section 6.6.2.2, here we will focus on the different initialisation techniques for Basis
Function Networks.

One method for placing the centres of the basis functions is to locate them at the
interstices of some coarse lattice defined over the input space [37]. If we assume the
lattice to be uniform with d divisions along each dimension, and the dimensionality
of the input space to be n, a uniform lattice requires dn basis functions. This
exponential growth makes the use of such a uniform lattice impractical for high-
/dimensional space.

Moody and Darken [120] suggested a K-means clustering procedure in the input
space to position the basis functions. The K-means method, described into detail in
Appendix A.2, takes as input the training set and returns m groups of input vectors
each parameterised by a centre cj and a width σj . This method generally requires
a much smaller number of basis functions than the uniform partition, nevertheless
the basis location concerns only that part of the input space actually covered by
data. The assumption underlying this method is that similar inputs should produce
similar outputs and that these similar input pairs should be bundled together into
clusters in the training set. This assumption is reasonable but not necessarily
true in real problems. Therefore, the adoption of K-means clustering techniques
for supervised learning is essentially a heuristic technique and finding a dataset to
which this technique cannot be applied satisfactorily is not uncommon.

An alternative to K-means clustering for initialisation has been proposed in the
Neuro-Fuzzy literature [11, 12]. The initialisation of the architecture is provided
by a hyperellipsoidal fuzzy clustering procedure. This procedure clusters the data
in the input/output domain, obtaining a set of hyperellipsoids which are a rough
preliminary representation of the mapping. The parameters of the ellipsoids (eigen-
values) are used to initialise the parameters αj of the consequent models, while the
projection of their barycentres on the input domain determines the initial positions
of the membership functions (see Fig. 8.15).

8.1.9.2 Parametric identification: local models

A common approach to the optimisation of the parameters αj of local models is the
least-squares method (see Eq. (6.6.2) and (6.6.4)).

If the local models are nonlinear, some nonlinear optimisation technique is re-
quired (Section 6.6.2.2). Such a procedure is typically computationally expensive
and does not guarantee the convergence to the global minimum.

However, in the case of local linear models (Eq. 8.1.19), the parametric identi-
fication can take advantage of linear techniques. Assume that the local models are
linear, i.e.

hj(x, αj) = hj(x, βj) = xTβj (8.1.24)
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Figure 8.15: The hyperellipsoidal clustering initialisation procedure for a single-
input single-output mapping. The training points (dots) are grouped in three el-
lipsoidal clusters after a procedure of fuzzy clustering in the input/output domain.
The projection of the resulting clusters in the input domain (x-axis) determines the
centre and the width of the triangular membership functions.

There are two possible variants for the parameter identification [122, 123]:

Local optimisation. The parameters of each local model are estimated indepen-
dently.

A weighted least squares optimisation criterion can be defined for each local
model, where the weighting factor is the current activation of the correspond-
ing basis function. The parameters of each model hj(·, βj), j = 1, . . . ,m, are
then estimated using a set of locally weighted estimation criteria

Jj(βj) =
1

N
(y −Xβj)TQj(y −Xβj) (8.1.25)

where Qj is a [N×N ] diagonal weighting matrix, having as diagonal elements
the weights ρj(x1, ηj), . . . , ρj(xN , ηj). The weight ρj(xi, ηj) represents the
relevance of the ith example of the training set in the definition of the jth

local model.

The locally weighted least squares estimate β̂j of the local model parameter
vector βj is

β̂j = (XTQjX)−1XTQjy (8.1.26)

Global optimisation. The parameters of the local models are all estimated at the
same time. If the local models are assumed to be linear in the parameters, the
optimisation is a simple least-squares problem. We get the following regression
model:

y =

m∑
j=1

ρj(x, ηj)x
Tβj = ΦΘ (8.1.27)

where Φ is a matrix [N × (n+ 1)m]

Φ =

 Φ1

...
ΦN

 (8.1.28)
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with
Φi = [ρ1(xi, ηj)x

T
i , . . . , ρm(xi, ηj)x

T
i ] (8.1.29)

and Θ is a matrix [(n+ 1)m× 1]

Θ =

 β1

...
βm

 (8.1.30)

The least-squares estimate Θ̂ returns the totality of parameters of the local models.
Note that the two approaches differ both in terms of predictive accuracy and

final interpretation of the local models. While the first approach aims to obtain
local linear models hj somewhat representative of the local behaviour of the target
in the region described by ρj [123], the second approach disregards any qualita-
tive interpretation by pursuing only a global prediction accuracy of the modular
architecture.

8.1.9.3 Structural identification

The structure of a BFN is characterised by many factors: the shape of the basis
functions, the number m of modules and the structure of the local models. Here,
for simplicity, we will consider a structural identification procedure which deals
exclusively with the number m of local models.

The structural identification procedure consists in adapting the number of mod-
ules to the complexity of the process underlying the data. According to the process
described in Section 6.8, different BFN architectures with different numbers of mod-
els are first generated, then validated and finally selected.

Analogously to Neural Networks and Regression Trees, two are the possible
approaches to the generation of BFN architectures:

Forward: the number of local models increases from a minimum mmin to a maxi-
mum value mmax.

Backward: we start with a large number of models and we proceed gradually by
merging basis functions. The initial number must be set sufficiently high such
that the nonlinearity can be captured accurately enough.

Once a set of BFN architectures has been generated, first a validation measure
is used to assess the generalisation error of the different architectures and then a
selection of the best structure is performed. An example of structural identification
of Neuro-Fuzzy Inference Systems based on cross-validation is presented in [21].

Note that BFN structural identification, unlike the parametric procedure de-
scribed in Section 8.1.9.2, is a non/convex problem and cannot take advantage of
any linear validation technique. This is due to the fact that a BFN architecture,
even if composed of local linear modules, behaves globally as a nonlinear approxi-
mator. The resulting learning procedure is then characterised by an iterative loop
over different model structures as illustrated in the flow chart of Fig. 8.16.

8.1.10 From modular techniques to local modelling

Modular techniques are powerful engines but leave still some problems unsolved.
While these architectures have efficient parametric identification algorithms, they
are inefficient in terms of structural optimisation. If the parametric identification
takes advantage of the adoption of local linear models, the validation of the global
architecture remains a nonlinear problem which can be addressed only by compu-
tationally expensive procedures.
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Figure 8.16: Flow chart of the BFN learning procedure. The learning procedure is
made of two nested loops: the inner one (made of a linear and nonlinear step) is
the parametric identification loop which minimises the empirical error J , the outer
one searches for the model structure which minimises the validation criterion.
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The learning problem for modular architectures is still a problem of function
estimation formulated in terms of minimisation of the empirical risk over the whole
training set. The modular configuration makes the minimisation simpler but in
theoretical terms the problem appears to be at the same level of complexity as in a
generic nonlinear estimator.

Once also the constraint of global optimisation is relaxed, the divide-and-conquer
idea leads to the local modelling approach.

8.1.11 Local modelling

Local modelling is a popular nonparametric technique, which combines excellent
theoretical properties with a simple and flexible learning procedure.

This section will focus on the application of local modelling to the regression
problem. The idea of local regression as a natural extension of parametric fitting
arose independently at different points in time and in different countries in the
19th century. The early literature on smoothing by local fitting focused on one
independent variable with equally spaced values. For a historical review of early
work on local regression see [44].

The modern view of smoothing by local regression has origins in the 1950’s and
1960’s in the kernel methods introduced in the density estimation setting . As far
as regression is concerned, the first modern works on local regression were proposed
by Nadaraya [125] and Watson [167].

8.1.11.1 Nadaraya-Watson estimators

Let K(x, q,B) be a nonnegative kernel function that embodies the concept of vicin-
ity. This function depends on the query point q, where the prediction of the target
value is required, and on a parameter B ∈ (0,∞), called bandwidth, which represents
the radius of the neighbourhood. The function K satisfies two conditions:

0 ≤K(x, q,B) ≤ 1 (8.1.31)

K(q, q, B) = 1 (8.1.32)

For example, in the simplest one-dimensional case (dimension n = 1 of the input
space) both the rectangular vicinity function (also called uniform kernel) (Fig. 8.17)

K(x, q,B) =

{
1 if ‖x− q‖ < B

2

0 otherwise
(8.1.33)

and the soft threshold vicinity function (Fig. 8.18)

K(x, q,B) = exp

{
− (x− q)2

B2

}
(8.1.34)

satisfy these requirements. Other examples of kernel functions are reported in
Appendix F.1.

The Nadaraya-Watson kernel regression estimator is given by

h(q) =

∑N
i=1K(xi, q, B)yi∑N
i=1K(xi, q, B)

(8.1.35)

where N is the size of the training set. The idea of kernel estimation is simple.
Consider the case of a rectangular kernel in one dimension (n = 1). In this case,
the estimator (8.1.35) is a simple moving average with equal weights: the estimate
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Figure 8.17: Hard-threshold kernel function.

Figure 8.18: Soft-threshold kernel function.

at point q is the average of observations yi corresponding to the xi’s belonging to
the window [q −B, q +B].

If B → ∞ then the estimator tends to the average h =
∑N

i=1 yi

N and thus for
mappings f(·) which are far from constant the bias becomes large.

If B is smaller than the pairwise distance between the sample points xi then the
estimator reproduces the observations h(xi) = yi. In this extreme case, the bias
tends to zero at the cost of high variance. In general terms, by increasing B we
increase the bias of the estimator, while by reducing B we obtain a larger variance.
The optimal choice for B corresponds to an equal balance between bias and variance
(Section 5.6).

From a function approximation point of view, the Nadaraya-Watson estimator is
a least-squares constant approximator. Suppose we want to approximate locally the
unknown function f(·) by a constant θ. The local weighted least-squares estimate
is

θ̂ = arg min
θ

N∑
i=1

wi(yi − θ)2 =

∑N
i=1 wiyi∑N
i=1 wi

(8.1.36)

It follows that the kernel estimator is an example of locally weighted constant
approximator with wi = K(xi, q, B).

The Nadaraya-Watson estimator suffers from a series of shortcomings: it has
large bias particularly in regions where the derivative of the regression function
f(x) or of the density π(x) is large. Further, it does not adapt easily to nonuniform
π(x).

An example is given in Fig. 8.19 where the Nadaraya-Watson estimator is used
to predict the value of the function f(x) = 0.9 + x2 in q = 0.5. Since most of the
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Figure 8.19: Effect of asymmetric data distribution on the Nadaraya-Watson esti-
mator: the plot reports in the input/output domain the function f = 0.9 +x2 to be
estimated, the available points (crosses), the values of the kernel function (stars),
the value to be predicted in q = 0.5 (dotted horizontal line) and the value predicted
by the NW estimator (solid horizontal line).

observations (crosses) are on the left of q, the estimate is biased downwards.

A more severe problem is the large bias which occurs when estimating at a
boundary region. In Fig. 8.20 we wish to estimate the value of f(x) = 0.9 + x2 at
q = 0.5. Here the regression function has positive slope and hence the Nadaraya-
Watson estimate has substantial positive bias.

8.1.11.2 Higher order local regression

Once the weakness of the local constant approximation was recognised, a more
general local regression appeared in the late 1970’s [42, 151, 103]. Work on local
regression continued throughout the 1980’s and 1990’s, focusing on the application
of smoothing to multidimensional problems [43].

Local regression is an attractive method both from the theoretical and the prac-
tical point of view. It adapts easily to various kinds of input distributions π (e.g.
random, fixed, highly clustered or nearly uniform). See in Fig. 8.21 the local re-
gression estimation in q = 0.5 for a function f(x) = 0.9 + x2 and an asymmetric
data configuration.

Moreover, there are almost no boundary effects: the bias at the boundary stays
at the same order as in the interior, without use of specific boundary kernels (com-
pare Fig. 8.20 and Fig. 8.22).

8.1.11.3 Parametric identification in local regression

Given two variables x ∈ X ⊂ <n and y ∈ Y ⊂ <, let us consider the mapping
f : Rn → R, known only through a set of N examples {〈xi, yi〉}Ni=1 obtained as
follows:

yi = f(xi) + wi, (8.1.37)
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Figure 8.20: Effect of a boundary on the Nadaraya-Watson estimator: the plot
reports in the input/output domain the function f = 0.9 + x2 to be estimated, the
available points (crosses), the values of the kernel function (stars), the value to be
predicted in q = 0.5 (dotted horizontal line) and the value predicted by the NW
estimator (solid horizontal line).

Figure 8.21: Local linear regression in asymmetric data configuration: the plot
reports in the input/output domain the function f = 0.9 + x2 to be estimated, the
available points(crosses), the values of the effective kernel (stars), the local linear
fitting, the value to be predicted in q = 0.5 (dotted horizontal line) and the value
predicted by the local regression (solid horizontal line).
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Figure 8.22: Local linear regression in boundary configurations: the plot reports in
the input/output domain the function f = 0.9 + x2 to be estimated, the available
points (crosses), the values of the effective kernel (stars), the local linear fitting, the
value to be predicted in q = 0.5 (dotted horizontal line) and the value predicted by
the local regression (solid horizontal line).

where ∀i, wi is a random variable such that Ew[wi] = 0 and Ew[wiwj ] = 0, ∀j 6= i,
and such that Ew[wmi ] = µm(xi), ∀m ≥ 2, where µm(·) is the unknown mth moment
(Eq. (2.11.39)) of the distribution of wi and is defined as a function of xi. In
particular for m = 2, the last of the above-mentioned properties implies that no
assumption of constant global variance (homoscedasticity) is made.

The problem of local regression can be stated as the problem of estimating the
value that the regression function f(x) = Ey[y|x] takes for a specific query point q,
using information pertaining only to a neighbourhood of q.

By using the Taylor’s expansion truncated to the order p, a generic smooth
regression function f(·) can be approximated by

f(x) ≈
p∑
j=0

f (j)(q)

j!
(x− q)j (8.1.38)

for x in a neighbourhood of q. Given a query point q, and under the hypothesis of a
local homoscedasticity of wi, the parameter vector β̂ of a local linear approximation
of f(·) in a neighbourhood of q can be obtained by solving the locally weighted
regression (LWR)

β̂ = arg min
β

N∑
i=1

{(
yi − xTi β

)2
K(xi, q, B)

}
, (8.1.39)

where K(·) is a kernel function, B is the bandwidth, and a constant value 1 has been
appended to each vector xi in order to consider a constant term in the regression.
In matrix notation, the weighted least squares problem (8.1.39) can be written as

β̂ = arg min
β

(y −Xβ)TW (y −Xβ) (8.1.40)
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where X denotes the [N × (n+ 1)] input matrix whose ith row is xTi , y is a [N × 1]
vector whose ith element is yi and W is a [N×N ] diagonal matrix whose ith diagonal
element is wii =

√
K(xi, q, B). From least-squares theory, the solution of the above

stated weighted least squares problem is given by the [(n+ 1)× 1] vector:

β̂ = (XTWTWX)−1XTWTWy = (ZTZ)−1ZT v = PZT v, (8.1.41)

where Z = WX, v = Wy, and the matrix XTWTWX = ZTZ is assumed to be
non-singular so that its inverse P = (ZTZ)−1 is defined.

Once obtained the local linear polynomial approximation, a prediction of f(q),
is finally given by:

ŷq = qT β̂. (8.1.42)

8.1.11.4 Structural identification in local regression

While the parametric identification in a local regression problem is quite simple
and reduces to a weighted least-squares, there are several choices to be made in
terms of model structure. These are the most relevant parameters in local structure
identification:

• the kernel function K,

• the order of the local polynomial,

• the bandwidth parameter,

• the distance function,

• the localised global structural parameters.

In the following sections, we will present in detail the importance of these structural
parameters and finally we will discuss the existing methods for tuning and selecting
them.

8.1.11.5 The kernel function

Under the assumption that the data to be analysed are generated by a continuous
mapping f(·), we want to consider positive kernel functions K(·, ·) that are peaked
at x = q and that decay smoothly to 0 as the distance between x and q increases.
Examples of distance-based kernel functions are reported in AppendixF.1.

Some considerations can be made on how relevant is the kernel shape for the final
accuracy of the prediction. First, it is evident that a smooth weight function results
in a smoother estimate. On the other side, for hard-threshold kernels (8.1.33),
as q changes, available observations abruptly switch in and out of the smoothing
window. Second, it is relevant to have kernel functions with nonzero values on a
compact bounded support rather than simply approaching zero for |x − q| → ∞.
This allows faster implementations, since points further from the query than the
bandwidth can be ignored with no error.

8.1.11.6 The local polynomial order

The choice of the local polynomial degree is a bias/variance trade-off. Generally
speaking, a higher degree will generally produce a less biased, but a more variable
estimate than a lower degree one.

Some asymptotic results in literature assert that good practice in local polyno-
mial regression is to adopt a polynomial order which differs of an odd degree from
the order of the terms to be estimated [66]. In practice, this means that if the goal
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Figure 8.23: Too narrow bandwidth ⇒ overfitting ⇒ large prediction error e..

of local polynomial regression is to estimate the value of the function in the query
point (degree zero in the Taylor expansion (8.1.38)), it is advisable to use orders
of odd degree; otherwise, if the purpose is to estimate the derivatives in the query
point it is better to fit with even degrees. However, others suggest in practical
applications not to rule out any type of degree [44].

In the previous sections, we have already introduced some consideration on
degree zero fitting. This choice very rarely appears to be the best choice in terms of
prediction, even if it presents a strong advantage in computational terms. By using
a polynomial degree greater than zero we can typically increase the bandwidth by
a large amount without introducing intolerable bias. Despite the increased number
of parameters, the final result is smoother thanks to an increased neighbourhood
size.

A degree having an integer value is generally assumed to be the only possible
choice for the local order. However, the accuracy of the prediction results to be
highly sensitive to discrete changes of the degree.

A possible alternative is polynomial mixing, proposed in global parametric fitting
by Mallows [116] and in local regression by Cleveland and Loader [44]. Polynomial
mixings are polynomials of fractional degree p = m + c where m is an integer and
0 < c < 1. The mixed fit is a weighted average of the local polynomial fits of degree
m and m+ 1 with weight 1− c for the former and weight c for the latter

fp(·) = (1− c)fm(·) + cfm+1(·) (8.1.43)

We can choose a single mixing degree for all x or we can use an adaptive method
by letting p vary with x.

8.1.11.7 The bandwidth

A natural question is how wide the local neighbourhood should be so that the local
approximation (8.1.38) holds. This is equivalent to asking how large the bandwidth
parameter should be in (8.1.33). If we take a small bandwidth B, we are able to
cope with the eventual nonlinearity of the mapping, that is, in other terms, we keep
the modelling bias small . However, since the number of data points falling in this
local neighbourhood is also small, we cannot average out the noise and the variance
of the prediction will be consequently large (Fig. 8.23).

On the other hand, if the bandwidth is too large, we could smooth excessively
the data, then introducing a large modelling bias (Fig. 8.24). In the limit case of an
infinite bandwidth, for example, a local linear model turns out to be a global linear
fitting which, by definition, cannot take into account any type of nonlinearity.
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Figure 8.24: Too large bandwidth ⇒ underfitting ⇒ large prediction error e.

A vast amount of literature has been devoted to the bandwidth selection prob-
lem. Various techniques for selecting smoothing parameters have been proposed
during the last decades in different setups, mainly in kernel density estimation [101]
and kernel regression.

Two are the main strategies for the bandwidth selection:

Constant bandwidth selection. The bandwidth B is independent of the train-
ing set DN and the query point q.

Variable bandwidth selection. The bandwidth is a function B(DN ) of the
dataset DN . For a variable bandwidth, a further distinction should be made
between the local and global approach.

1. A local variable bandwidth B(DN , q) is not only function of the training
data DN but also changes with the query point q. An example is the
nearest neighbour bandwidth selection where the bandwidth is set to be
the distance between the query point and the kth nearest point [151].

2. A global variable bandwidth is a function B(DN ) of the data set but
is the same for all the queries. However, a further degree of distinction
should be made between the point-based case where the bandwidth B(xi)
is a function of the training point xi, and the uniform case where B is
constant.

A constant bandwidth is easy to interpret and can be sufficient if the unknown
curve is not too wiggly, i.e. has a high smoothness. Such a bandwidth, however,
fails to do a good job when the unknown curve has a rather complicated structure.
To capture the complexity of such a curve a variable bandwidth is needed. A
variable bandwidth allows for different degrees of smoothing, resulting in a possible
reduction of the bias at peaked regions and of the variance at flat regions. Further,
a variable local bandwidth can adapt to the data distribution, to different levels
of noise and to changes in the smoothness of the function. Fan and Gijbels [64]
argue for point-based in favour of query-based local bandwidth selection mainly for
computational efficiency reasons.

8.1.11.8 The distance function

The performance of any local method depends critically on the choice of the distance
function d : Rn × Rn → R. In the following, we define some distance functions for
ordered inputs:
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Unweighted Euclidean distance

d(x, q) =

√√√√ n∑
j=1

(xj − qj)2 =
√

(x− q)T (x− q) (8.1.44)

Weighted Euclidean distance

d(x, q) =
√

(x− q)TMTM(x− q) (8.1.45)

The unweighted distance is a particular case of the weighted case for M diag-
onal with mjj = 1.

Unweighted Lp norm (Minkowski metric)

d(x, q) =

 N∑
j=1

|xj − qj |

 1
p

(8.1.46)

Weighted Lp norm It is computed through the unweighted norm d(Mx,Mq).

It is important to remark that when an entire column of M is zero, all points along
the corresponding direction get the same relevance in the distance computation.
Also, notice that once the bandwidth is selected, some terms in the matrix M can
be redundant parameters of the local learning procedure. The redundancy can be
eliminated by requiring the determinant of M to be one or fixing some element of
M .

Atkeson et al. [10] distinguish between three ways of using distance functions:

Global distance function. The same distance is used at all parts of the input
space.

Query-based distance function. The distance measure is a function of the cur-
rent query point. Examples are in [150, 88, 72].

Point-based local distance functions. Each training point has an associated
distance metric [150]. This is typical of classification problems where each
class has an associated distance metric [3, 4].

8.1.11.9 The selection of local parameters

As seen in the previous sections, there are several parameters that affect the accu-
racy of the local prediction. Generally, they cannot be selected and/or optimised
in isolation as the accuracy depends on the whole set of structural choices. At the
same time, they do not all play the same role in the determination of the final
estimation. It is a common belief in local learning literature that the bandwidth
and the distance function are the most important parameters. The shape of the
weighting function, instead, plays a secondary role.

In the following, we will mainly focus on the methods existing for bandwidth
selection. They can be classified in

Rule of thumb methods. They provide a crude bandwidth selection which in
some situations may result sufficient. Examples of rule of thumb is provided
in [65] and in [86].
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Data-driven estimation. It is a selection procedure which estimates the gener-
alisation error directly from data. Unlike the previous approach, this method
does not rely on the asymptotic expression, but it estimates the values directly
from the finite data set. To this group belong methods like cross-validation,
Mallow’s Cp, Akaike’s AIC and other extensions of methods used in classical
parametric modelling.

There are several ways in which data-driven methods can be used for structural
identification. Atkeson et al. [10] distinguish between

Global tuning. The structural parameters are tuned by optimising a data driven
assessment criterion on the whole data set. An example is the General Memory
Based Learning (GMBL) described in [121].

Query-based local tuning. The structural parameters are tuned by optimising
a data driven assessment criterion query-by-query. An example is the lazy
learning algorithm proposed by the author and colleagues in [24, 32, 31].

Point-based local tuning. A different set of structural parameters is associated
with each point of the training set.

R implementation

A local linear algorithm for regression is implemented by the R library lazy [23].
The script Nonlinear/lazy.R shows the prediction accuracy in the Dopler dataset
for different number of neighbours. (Figure 8.25 and Figure 8.26).

•

8.1.11.10 Bias/variance decomposition of the local constant model

An interesting aspect of local models is that it is easy to derive an analytical ex-
pression of the bias/variance decomposition.

In the case of a constant local model, the prediction in q is

h(q, αN ) =
1

k

k∑
i=1

y[i]
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Figure 8.25: Locally linear fitting with a rectangular kernel and a bandwidth made
of 10 neighbours.

Figure 8.26: Locally linear fitting with a rectangular kernel and a bandwidth made
of 228 neighbours.
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computed by averaging the value of y for the k closest neighbours x[i], i = 1, . . . , k
of q.

The bias/variance decomposition takes the form discussed in Equation (3.5.18)
that is

MSE(q) = σ2
w +

(
1

k

k∑
i=1

f(x[i])− f(q)

)2

+ σ2
w/k (8.1.47)

where σ2
w is the variance of the noise and σ2

w/k is the variance of a sample average
estimator based on k points (Equation (3.5.11). Note the behaviour of the MSE
term as a function of k. By increasing k (i.e. larger neighbourhood) the first
term is invariant, the bias is likely to increase (since farther points are potentially
uncorrelated with q) and the variance decreases.

8.2 Nonlinear classification

In Section 7.2.1, we have shown that optimal classification is possible only if the
quantities Prob {y = ck|x}, k = 1, . . . ,K are known. What happens if this is not
the case? Three strategies are generally used.

8.2.1 Direct estimation via regression techniques

If the classification problem has K = 2 classes and if we denote them by y = 0 and
y = 1

E[y|x] = 1 · Prob {y = 1|x}+ 0 · Prob {y = 0|x} = Prob {y = 1|x}

Then a binary classification problem can be put in the form of a regression prob-
lem where the output takes value in {0, 1}. This means that, in principle, all the
regression techniques presented so far could be used to solve a classification task.
In practice, most of those techniques do not make any assumption about the fact
that the outcome in a classification task should satisfy the probabilistic constrains,
e.g. 0 ≤ Prob {y = 1|x} ≤ 1. This means that only some regression algorithms (e.g.
local constant models) are commonly used for binary classification as well.

8.2.1.1 The nearest-neighbour classifier

The nearest-neighbour algorithm is an example of local modelling (Section 8.1.11)
algorithm for classification.

Let us consider a binary {0, 1} classification task where a training set is available
and the classification is required for an input vector q (query point). The classifi-
cation procedure of a k-NN classifier can be summarised in the following steps:

1. Compute the distance between the query q and the training examples accord-
ing to a predefined metric.

2. Rank the observed inputs on the basis of their distance to the query.

3. Select a subset {x[1], . . . , x[k]} of the k ≥ 1 nearest neighbours. Each of these
neighbours x[k] has an associated class y[k].

4. Compute the estimation of the conditional probability of the class 1 by con-
stant fitting

p̂1(q) =

∑k
i=1 y[i]

k
(8.2.48)
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Figure 8.27: kNN prediction (blue line) of the conditional probability (green line)
for different values of k. Dotted-lines represent the class-conditional densities.

or linear fitting

p̂1(q) = âq + b̂

where the parameters â and b̂ are locally fitted by least-squares regression.

5. Return the prediction, either by a majority vote or according to the condi-
tional probability.

It is evident that the hyperparameter k plays a key role in the trade-off between
bias and variance. Figure 8.27 illustrates the trade-off in an n = 1 and N = 400
binary classification task where the two class-conditional distributions are Normal
with means in −1 and 3, respectively. Note that by increasing k the prediction
profile becomes smoother and smoother.

Figure 8.28 shows the trade-off in an n = 2 classification task. Note that, though
the separating region becomes closer to the optimal for large k, an extrapolation
bias occurs in regions far from the observed examples.

It is interesting to see that the kNN classifier can be justified in terms of the
Bayes theorem. Suppose that the dataset has the formDN = {(x1, y1), . . . , (xN , yN )}
where y ∈ {c1, . . . , cK} and q ∈ Rn is the query point where we want to compute
the a posteriori probability. Suppose that the dataset contains Nj points labelled
with the class cj , i.e.

K∑
j=1

Nj = N

Let us consider a region R around the input x having volume V . If the volume
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Figure 8.28: kNN class predictions in the n = 2 input space for different values of k.
Dots represent the training points. Continuous black line is the optimal separating
hyperplane.
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is small enough, we may consider the density constant over the entire region5. It
follows that the probability of observing a point within this volume is

P =

∫
R

p(z)dz ≈ p(x)V ⇒ p(x) ≈ P

V

Given a training dataset of size N , if we observe NR example in a region R we can
approximate P with P̂ = NR

N and consequently obtain

p̂(x) =
NR
NV

(8.2.49)

Now consider the query point q and a neighbouring volume V containing k points
of which kj ≤ k are labelled with the class cj . From (8.2.49) we obtain the k-NN
density estimate (A.1.11) of the class-conditional probability

p̂(q|cj) =
kj
NjV

and of the unconditional density

p̂(q) =
k

NV

Since the class priors can be estimated by P̂rob {y = cj} =
Nj
N from (5.3.16) it

follows

P̂rob {y = cj |q} =
kj
k

j = 1, . . . ,K

This implies that in a binary {0, 1} case the computation (8.2.48) estimates the
conditional probability of the class 1.

8.2.2 Direct estimation via cross-entropy

The approach consists in modelling the conditional distribution Prob {y = cj |x} , j =

1, . . . ,K with a set of models P̂j(x, α), j = 1, . . . ,K satisfying the constraints

P̂j(x, α) > 0 and
K∑
j=1

P̂j(x, α) = 1.

Parametric estimation boils down to the minimisation of the cross-entropy cost
function (6.6.5). Typical approaches are logistic regression and neural networks.

In logistic regression for a two-class task we have

P̂1(x, α) =
expx

Tα

1 + expxTα
=

1

1 + exp−xTα
, P̂2(x, α) =

1

1 + expxTα
(8.2.50)

where x and α are [p, 1] vectors. This implies

log
P̂1(x, α)

P̂2(x, α)
= xTα

where the transformation log p
1−p is called the logit transformation and the func-

tion (8.1.2) is the logistic function. Note the in the case of Normal class-conditional

5For a discussion about the validity of this assumption in large dimensional settings, refer to
Section 10.1
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distributions (Section 7.2.1.1) it is is possible to derive the value of α from the a
priori probabilities, the means and the covariances of the two distributions [154].

In a nonlinear classifier (e.g. neural net)

log
P̂1(x, α)

P̂2(x, α)
= h(x, α)

where h(x, α) is the output of the learner.
In a binary case (c1 = 1, c2 = 0) the cross-entropy function (to minimise) be-

comes

J(α) = −
N∑
i=1

log P̂yi(xi, α) =

−
N∑
i=1

(
yi log P̂1(xi, α) + (1− yi) log(1− P̂1(xi, α))

)
=

=

N∑
i=1

(
−yih(xi, α) + log(1 + exph(xi,α)

)
(8.2.51)

In the logistic regression case (linear h) the cost function is minimised by iteratively
reweighted least squares. For a generic h, a gradient-based iterative approach is
required.

Another formulation of the binary case is (c1 = 1, c2 = −1) with

P̂ (y|x) =
1

1 + exp−yh(x,α)

that satisfies P̂ (y = 1|x) = 1 − P̂ (y = −1|x). In this case the classification rule is
the sign function sign[h(x)] and the cost function to minimise is

J(α) =

N∑
i=1

log(1 + exp−yih(xi,α)) (8.2.52)

also known as the log-loss function which is a monotone decreasing function of the
terms yih(xi, α) = yihi called the margins. Minimise (8.2.52) is then equivalent to
minimise the set of training points for which yi and the prediction h(xi, α) have
a different sign. The decreasing nature of the function exp−yh(x,α) is such that
negative margins are much more penalised than positive ones. Note that this is not
a property of the least-squares criterion (used in regression) (y−h(x, α))2 where in
some cases a positive margin may be more penalised than a negative one. This is a
reason why regression techniques are not recommended in classification tasks.

8.2.3 Density estimation via the Bayes theorem

Since

Prob {y = ck|x} =
p(x|y = ck)Prob {y = ck}

p(x)

an estimation of Prob {x|y = ck} allows an estimation of Prob {y = ck|x}. Several
techniques exist in literature to estimate Prob {x|y = ck}.

We will present two of them in the following section. The first makes the as-
sumption of conditional independence to make easier the estimation. The second
relies on the construction of optimal separating hyperplanes to create convex regions
containing set of x points sharing the same class label.
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8.2.3.1 Naive Bayes classifier

The Naive Bayes (NB) classifier has shown in some domains a performance compa-
rable to that of neural networks and decision tree learning.

Consider a classification problem with n inputs and a random output variable y
that takes values in the set {c1, . . . , cK}. The Bayes optimal classifier should return

c∗(x) = arg max
j=1,...,K

Prob {y = cj |x}

We can use the Bayes theorem to rewrite this expression as

c∗(x) = arg max
j=1,...,K

Prob {x|y = cj}Prob {y = cj}
Prob {x}

= arg max
j=1,...,K

Prob {x|y = cj}Prob {y = cj}

How to estimate these two terms on the basis of a finite set of data? It is easy
to estimate each of the a priori probabilities Prob {y = cj} simply by counting the
frequency with which each target class occurs in the training set. The estimation
of Prob {x|y = cj} is much harder. The NB classifier is based on the simplifying
assumption that the input values are conditionally independent given the target
value (see Section 2.13.4):

Prob {x|y = cj} = Prob {x1, . . . , xn|y = cj} =

n∏
h=1

Prob {xh|y = cj}

The NB classification is then

cNB(x) = arg max
j=1,...,K

Prob {y = cj}
n∏
h=1

Prob {xh|y = cj}

If the inputs xh are discrete variables the estimation of Prob {xh|y = cj} boils down
to the counting of the frequencies of the occurrences of the different values of xh
for a given class cj .

Example

Obs G1 G2 G3 G

1 P.LOW P.HIGH N.HIGH P.HIGH
2 N.LOW P.HIGH P.HIGH N.HIGH
3 P.LOW P.LOW N.LOW P.LOW
4 P.HIGH P.HIGH N.HIGH P.HIGH
5 N.LOW P.HIGH N.LOW P.LOW
6 N.HIGH N.LOW P.LOW N.LOW
7 P.LOW N.LOW N.HIGH P.LOW
8 P.LOW N.HIGH N.LOW P.LOW
9 P.HIGH P.LOW P.LOW N.LOW
10 P.HIGH P.LOW P.LOW P.LOW

Let us compute the NB classification for the query {G1=N.LOW G2= N.HIGH
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G3=N.LOW Since

Prob {y = P.HIGH} = 2/10, Prob {y = P.LOW} = 5/10

Prob {y = N.HIGH} = 1/10, Prob {y = N.LOW} = 2/10

Prob {G1 = N.LOW |y = P.HIGH} = 0/2, Prob {G1 = N.LOW |y = P.LOW} = 1/5

Prob {G1 = N.LOW |y = N.HIGH} = 1/1, Prob {G1 = N.LOW |y = N.LOW} = 0/2

Prob {G2 = N.HIGH|y = P.HIGH} = 0/2, Prob {G2 = N.HIGH|y = P.LOW} = 1/5

Prob {G2 = N.HIGH|y = N.HIGH} = 0/1, Prob {G2 = N.HIGH|y = N.LOW} = 0/2

Prob {G3 = N.LOW |y = P.HIGH} = 0/2, Prob {G3 = N.LOW |y = P.LOW} = 3/5

Prob {G3 = N.LOW |y = N.HIGH} = 0/1, Prob {G3 = N.LOW |y = N.LOW} = 0/2

it follows that

cNB(x) =

arg max
P.H,P.L,N.H,N.L

{2/10∗0∗0∗0, 5/10∗1/5∗1/5∗3/5, 1/10∗1∗0∗1, 2/10∗0∗0∗0} =

= P.LOW

•

The NB classifier relies on the naive (i.e. simplistic) assumption that the inputs
are independent given the target class. But why is this assumption made and when
may it be considered as realistic? There are essentially two reasons underlying the
NB approach, one of statistical nature and the second of causal nature. From a sta-
tistical perspective, the conditional independence assumption largely reduces the
capacity of the classifier by reducing the number of parameters . This is a variance
reduction argument which makes the algorithm effective in large dimensional clas-
sification tasks. However, there are classification tasks which by their own nature
are more compliant with the NB assumptions than others. Those are tasks where
the features used to predict the class are descriptors of the phenomenon represented
by the class. Think for instance to the classification task where a doctor predicts
if a patient got flu by means of symptomatic information (does she cough? has he
fever?). All those measures are correlated but they become independent once we
know the latent state.

8.2.3.2 SVM for nonlinear classification

The extension of the Support Vector (SV) approach to nonlinear classification re-
lies on the transformation of the input variables and the possibility of effectively
adapting the SVM procedure to a transformed input space.

The idea of transforming the input space by using basis functions is an intuitive
manner of extending linear techniques to a nonlinear setting.

Consider for example an input/output regression problem where x ∈ X ⊂ Rn.
Let us define m new transformed variables zj = zj(x), j = 1, . . . ,m, where zj(·)
is a predefined nonlinear transformation (e.g. zj(x) = log x1 + log x2). This is
equivalent to mapping the input space X into a new space, also known as feature
space, Z = {z = z(x)|x ∈ X}. Note that, if m < n, this transformation boils down
to a dimensionality reduction and it is an example of feature selection (Chapter 10).

Let us now fit a linear model y =
∑m
j=1 βmzm to the training data in the new

input space z ∈ Rm. By doing this, we carry out a nonlinear fitting of data simply
by using a conventional linear technique.
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This procedure can be adopted for every learning procedure but is particularly
efficient in the SVM framework. Before discussing it, we introduce the notion of
the dot-product kernel.

Definition 2.1 (Dot-product kernel). A dot-product kernel is a symmetric contin-
uous function K(·, ·) such that for all xi, xj ∈ X

K(xi, xj) = 〈z(xi), z(xj)〉 (8.2.53)

where 〈z1, z2〉 = zT1 z2 stands for the inner product and z(·) is the mapping from
the original to an Hilbert6 feature space Z.

It can be shown that any symmetric continuous function satisfying the Mercer’s
condition (Appendix F) is a dot-product kernel.

Let us suppose now that we want to perform a binary classification by SVM in
a transformed space z ∈ Z. For the sake of simplicity, we will consider a separable
case (Section 7.2.3). From (7.2.77) we derive that the parametric identification step
requires the solution of the dual quadratic programming problem

max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykz
T
i zk

}
=

= max
α

{
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiyk〈zi, zk〉

}
=

=

{
max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykK(xi, xk)

}
(8.2.54)

subject to 0 =
∑N
i=1 αiyi and αi ≥ 0, i = 1, . . . , N . If the kernel matrix K whose

ik term is K(xi, xk) is positive definite the solution is global and unique.
What is interesting is that the resolution of this problem differs from the linear

one (Equation (7.2.70)) by the replacement of the quantities 〈xi, xk〉 with 〈zi, zk〉 =
K(xi, xk). The resulting nonlinear SVM classifier takes then the form

h(x, β, β0) = sign[
∑

support vectors

yiαiK(xi, x) + β0] (8.2.55)

where the kernel function takes the place of the dot products in (7.2.79).
Whatever the feature transformation z(x) and the dimensionality m of Z, the

SVM computation requires only the availability of the symmetric positive definite
Gram matrix, also referred to as the kernel matrix K. What is interesting is that
once we know how to derive the kernel matrix we are not required to make explicit
the underlying transformation function z(x).

The use of a kernel function is an attractive computational short cut (also known
as the kernel trick) which enables the resolution in a high dimensional space without
doing explicit computations in that space.

8.3 Is there a best learner?

A vast amount of literature in machine learning served the purpose of showing the
superiority of some learning methods over the others. To support this claim, quali-
tative considerations and tons of experimental simulations have been submitted to

6Note that an Hilbert space is a vector space equipped with an inner product operation which
generalises the notion of Euclidean space to spaces that may be infinite dimensional.
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the scientific community. Every machine learning researcher dreams of inventing the
most accurate algorithm, without realising that the attainment of such an objective
would necessarily mean the end of machine learning... But is there an algorithm to
be universally preferred over others in terms of prediction accuracy?

If there was a universally best learning machine, research on machine learning
would be unnecessary: we would use it all the time. (Un)fortunately, the theoretical
results on this subject are not encouraging [54]. For any number N of observations,
there exist an input/output distribution for which the estimate of generalisation
error is arbitrarily poor. At the same time, for any learning machine L1 it exists a
data distribution and another learning machine L2 such that for all N , L2 is better
than L1.

It can be shown that there is no learning algorithm which is inherently superior
to any other, or even to random guessing. The accuracy depends on the match
between the (unknown) target distribution and the (implicit or explicit) inductive
bias of the learner.

This (surprising ?) result has been formalised by the No Free Lunch (NFL)
theorems by D. Wolpert [171]. In his seminal work, Wolpert characterises in prob-
abilistic terms the relation between target function, dataset and hypothesis. The
main difference with respect to other research on generalisation is that he does not
consider the generating process as constant (e.g. f fixed as in the bias/variance
decomposition 5.6.31), but he supposes the existence of a probability distribution
p(f) over the target functions f and that a learning algorithm implements a prob-
ability distribution p(h) over the hypothesis h. For instance, p(h = h|DN ) denotes
the probability that a learning algorithm will return the hypothesis h given the
training set DN

7. Based on this formalism, he encodes the following assumptions
in a probabilistic language:

• the target distribution is completely outside the researcher’s control [171] ,

• the learning algorithm designer has no knowledge about f when guessing a
hypothesis function.

This means that, over the input space region where we observed no training ex-
amples (off-training region), the hypothesis h is conditionally independent (Sec-
tion 2.13.4) of f given the training set:

p(h|f,DN ) = p(h|DN )

which in turn is equivalent to

p(f |h,DN ) = p(f |DN )

In other terms the only information about the target process that a hypothesis may
take advantage of is the one contained in the training set.

He then derives the generalisation error of a learning algorithm L conditioned
on a training set DN and computed on input values which do not belong to the
training set (i.e. off-training set region) as∑

x 6∈DN

Ef ,h[L(f ,h)|DN ](x) =

∑
x6∈DN

∫
f,h

L(h(x), f(x))p(f, h|DN )dfdh =
∑
x 6∈DN

∫
f,h

L(h(x), f(x))p(f |DN )p(h|DN )dfdh

(8.3.56)

7Note that throughout this book we have only considered deterministic learning algorithms,
for which p(h|H) is a Dirac function
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x1 x2 x3 y ŷ1 ŷ2 ŷ3 ŷ4

0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 ? 0 0 1 1
1 1 1 ? 0 1 0 1

Table 8.1: Off-training set prediction binary example

It follows that the generalisation error8 depends on the alignment (or match)
between the hypothesis h returned by L and the target f which is represented by
the inner product p(f |DN )p(h|DN ). Since the target is unknown, this match may
only be assessed a posteriori: a priori there is no reason to consider a learning
algorithm better than another. For any learning algorithm which is well aligned
with the distribution p(f |DN ) in the off-training set, it is possible to find another
distribution for which the match is much worse. Equation (8.3.56) is one of the
several NFL results stating that there is no problem-independent reason to favour
one learning algorithm L over another (not even random guessing) if

1. we are interested only in generalisation accuracy,

2. we make no a priori assumption on the target distribution,

3. we restrain to the accuracy over the off-training set region.

The presumed overall superiority of a learning algorithm (no matter the number of
publications or the H-factor of the author) is apparent and depends on the specific
task and underlying data generating process. The NFL theorems are then a modern
probabilistic version of the Hume sceptical argument : there is no logical evidence
that the future will behave like the past. Any prediction or modelling effort demands
(explicitly or implicitly) an assumption about the data generating process and the
resulting accuracy is strictly related to the validity of such an assumption. Note
that such assumptions underlie also learning procedures that seem to be general-
/purpose and data-driven like holdout or cross-validation: for instance, a holdout
strategy makes the assumption that the relation between the training portion of
the dataset and the validation one is informative about the relation between the
observed dataset and future query points (in off-training regions).

A NFL example

Let us consider a classification example from [57] where we have three binary in-
puts and one binary target which is a deterministic function of the inputs. Let us
suppose that the value of the target is known for 6 input configurations and that
we want to predict the value for the 2 remaining ones (Table ). Let us consider
4 classifiers which have identical behaviour for the training set yet they differ in
terms of their predictions for the off-training region. Which one is the best one in
the off-training set region? May we discriminate between them on the basis of the
training behaviour, if we make no additional assumption about the input/output
relationship in the off-training set region? The No Free Lunch answer is no. If
we assume no a priori information about the conditional distribution, we have 4

8Note the differences between the definitions (5.6.31) and (8.3.56) of generalisation error.
In (5.6.31) f is fixed and DN is random: in (8.3.56) f is random and DN is fixed
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Table 8.2: Off-training set prediction binary example: nearest-neighbour interpre-
tation of the four classifiers. The colours show which training points have been used
according to a nearest-neighbour strategy to return the off-training set predictions.

equiprobable off-training behaviours. On average the four predictors have the same
accuracy. Note that each predictor could have a justification in terms of the nearest
neighbour (Table 8.2). For instance, the first classifier (in black) relies on the in-
ductive bias that the first and the third features are the most informative about the
target, i.e. if we consider in the dataset the nearest neighbours of the off-training
inputs we obtain two zeros as predictions. This is not the case of the fourth (red)
which makes implicitly a different hypothesis (i.e. the target depends on x2 only)
and returns two ones accordingly.

•

8.4 Conclusions

A large part of machine learning research in the last forty years has been devoted to
the quest for the Holy Grail of generalisation. This chapter presented a number of
learning algorithms and their rationale. Most of those algorithms made the history
of the machine learning and were undeniably responsible for the success of the
discipline. When they were introduced, and every time they were used afterwards,
they were shown to be competitive and often outperform other algorithms. So, how
may all this be compatible with the No Free Lunch result? First of all the NFL
does not deny that some algorithms may generalise well under some circumstances.
It simply states that there is not a single algorithm outperforming consistently all
the others. Also, NFL results assume that the off-training set is the most pertinent
measure for assessing algorithms. Last but not least, the success of statistics (and
ML) is probably indicative that the prediction tasks we are commonly confronted
with belong to not such a wide and uniform distribution but that some of them are
more probable than others.

Nevertheless, the NFL results may appear as frustrating to a young researcher
aiming to pursue a career in machine learning (and incidentally finding the Holy
Grail): this is not necessarily so if we define in a less utopian, yet more scientific
way, the mission of a data scientist. The mission of a data scientist should not
be the promotion of a specific algorithm (or family of algorithms) but acting as
a scientist through the analysis of data. This means (s)he should use his know-
how NOT to return information about the merits of his preferred algorithm BUT
about the nature of the data generating distribution (s)he is dealing with. The
outcome of a ML research activity (e.g. publication) should be additional insight
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about the observed reality (or Nature) and not a contingent statement about the
temporary superiority of an algorithm. Newtons aim was to use differential calculus
to model and explain dynamics in Nature and not to promote a fancy differential
equation tool9. Consider also that every ML algorithm (also the least fashionable
and the least performing) might return some information (e.g. about the degree of
noise, nonlinearity) about the phenomenon we are observing. For instance, a low
accurate linear model tells us a lot about the lack of validity of the (embedded)
linear assumption in the observed phenomenon. In that sense wrong models might
play a relevant role as well since they might return important information about the
phenomenon under observation, notably (non)linearity, (non)stationarity, degree of
stochasticity, relevance of features and nature of noise.

8.5 Exercises

1. Suppose you want to learn a classifier for detecting spam in emails. Let the binary
variables x1, x2 and x3 represent the occurrence of the words ”Viagra”, ”Lottery”
and ”Won”, respectively, in a email.

Let the dataset of 20 emails being summarized as follows

Document x1 (Viagra) x2 (Lottery) x3 (Won) y (Class)

E1 0 0 0 NOSPAM
E2 0 1 1 SPAM
E3 0 0 1 NOSPAM
E4 0 1 1 SPAM
E5 1 0 0 SPAM
E6 1 1 1 SPAM
E7 0 0 1 NOSPAM
E8 0 1 1 SPAM
E9 0 0 0 NOSPAM
E10 0 1 1 SPAM
E11 1 0 0 NOSPAM
E12 0 1 1 SPAM
E13 0 0 0 NOSPAM
E14 0 1 1 SPAM
E15 0 0 1 NOSPAM
E16 0 1 1 SPAM
E17 1 0 0 SPAM
E18 1 1 1 SPAM
E19 0 0 1 NOSPAM
E20 0 1 1 SPAM

where

• 0 stands for the case-insensitive absence of the word in the email.

• 1 stands for the case-insensitive presence of the word in the email.

Let y = 1 denote a spam email and y = 0 a no-spam email.

The student should

2. Estimate on the basis of the data of exercise 1:

• Prob {x1 = 1,x2 = 1}
• Prob {y = 0|x2 = 1,x3 = 1}
• Prob {x1 = 0|x2 = 1}
• Prob {x3 = 1|y = 0,x2 = 0}

9...or patent it !
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• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0}
• Prob {x1 = 0|y = 0}
• Prob {y = 0}

Solution:

• Prob {x1 = 1,x2 = 1} = 0.1

• Prob {y = 0|x2 = 1,x3 = 1} = 0

• Prob {x1 = 0|x2 = 1} = 0.8

• Prob {x3 = 1|y = 0,x2 = 0} = 0.5

• Prob {y = 0|x1 = 0,x2 = 0,x3 = 0} = 1

• Prob {x1 = 0|y = 0} = 0.875

• Prob {y = 0} = 0.4

3. Answer to the following questions (Yes or No) on the basis of the data of exercise 1:

• Are x1 and x2 independent?

• Are x1 and y independent?

• Are the events x1 = 1 and x2 = 1 mutually exclusive?

Solution:

• Are x1 and x2 independent? NO

• Are x1 and y independent? NO

• Are the events x1 = 1 and x2 = 1 mutually exclusive? NO

4. Consider the following three emails

• M1: ”Lowest Viagra, Cialis, Levitra price”.

• M2: ”From Google Promo (GOOGLEPROMOASIA) Congratulation! Your
mobile won 1 MILLION USD in the GOOGLE PROMO”

• M3: ”This is to inform you on the release of the EL-GORDO SWEEPSTAKE
LOTTERY PROGRAM. Your name is attached to ticket number 025-11-464-
992-750 with serial number 2113-05 drew the lucky numbers 13-15 which con-
sequently won the lottery in the 3rd category.”

Use a Naive Bayes Classifier to compute for email M1 on the basis of the data of
exercise 1::

• the input x

• Prob {y = SPAM|x}Prob {x}
• Prob {y = NOSPAM|x}Prob {x}
• the email class

Solution:

• the input x = [1, 0, 0]

• Prob {y = SPAM|x}Prob {x} = 1/180 = 0.0055

• Prob {y = NOSPAM|x}Prob {x} = 1/40 = 0.025

• the email class: NOSP

5. Use a Naive Bayes Classifier to compute for email M2 on the basis of the data of
exercise 1::

• the input x

• Prob {y = SPAM|x}Prob {x}
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• Prob {y = NOSPAM|x}Prob {x}
• the email class.

Solution:

• the input x = [0, 0, 1]

• Prob {y = SPAM|x}Prob {x} = 1/18 = 0.055

• Prob {y = NOSPAM|x}Prob {x} = 7/40 = 0.175

• the email class is NOSPAM.

6. Use a Naive Bayes Classifier to compute for email M3 on the basis of the data of
exercise 1:

• the input x

• Prob {y = SPAM|x}Prob {x}
• Prob {y = NOSPAM|x}Prob {x}
• the email class

Solution:

• the input x = [0, 1, 1]

• Prob {y = SPAM|x}Prob {x} = 5/18 = 0.27

• Prob {y = NOSPAM|x}Prob {x} = 0

• the email class is SPAM

7. Consider a classification task with two binary inputs and one binary target y ∈
{−1,+1} where the conditional distribution is

x1 x2 P (y = 1|x1, x2)

0 0 0.8
0 1 0.1
1 0 0.5
1 1 1

Suppose that all the input configurations have the same probability.

Let the classifier be the rule:

IF x2 = 0 THEN ŷ = −1 ELSE ŷ = 1.

Consider a test set of size N = 10000.

For this classifier compute:

• the confusion matrix,

• the precision,

• the specificity (true negative rate)

• the sensitivity (true positive rate)

Solution:

• the confusion matrix,

ŷ = −1 ŷ = 1

y = −1 TN=1750 FP=2250

y = 1 FN=3250 TP=2750

• the precision TP/(TP+FP)=2750/5000=0.55

• the specificity (true negative rate) TN/(TN+FP)=1750/4000=0.4375



8.5. EXERCISES 269

• the sensitivity (true positive rate) TP/(TP+FN)=2750/6000=0.458

8. Consider a classification task with two binary inputs and one binary target y ∈
{−1,+1} where the conditional distribution is

x1 x2 P (y = 1|x1, x2)

0 0 0.8
0 1 0.1
1 0 0.5
1 1 1

Suppose that all the input configurations have the same probability.

Let the classifier be the rule:

IF x2 = 0 THEN ŷ = −1 ELSE ŷ = 1.

Consider a test set of size N = 10000.

For this classifier compute:

• the confusion matrix,

• the precision,

• the specificity (true negative rate)

• the sensitivity (true positive rate)

Solution:

• the confusion matrix,

ŷ = −1 ŷ = 1

y = −1 TN=1750 FP=2250

y = 1 FN=3250 TP=2750

• the precision, TP/(TP+FP)=2750/5000=0.45

• the specificity (true negative rate) TN/(TN+FP)=1750/4000=0.4375

• the sensitivity (true positive rate) TP/(TP+FN)=2750/6000=0.458

9. Consider a regression task with input x and output y and the following training set

X Y

0 0.5
-0.3 1.2
0.2 1
0.4 0.5
0.1 0
-1 1.1

Consider the three following models:

• constant

• 1NN, Nearest Neighbour with K=1

• 3NN, Nearest Neighbour with K=3

Compute for the constant model

• the vector of training errors ei = yi − ŷi
• the vector of leave-one-out errors e−ii = yi − ŷ−ii
• the mean-squared training error ,

• the mean-square leave-one-out error.
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Compute for the 1NN model

• the vector of training errors ei = yi − ŷi
• the vector of leave-one-out errors e−i = yi − ŷ−ii
• the mean-squared training error ,

• the mean-squared leave-one-out error.

Compute for the 3NN model

• the vector of training errors ei = yi − ŷi
• the vector of leave-one-out errors e−i = yi − ŷ−ii
• the mean-squared training error ,

• the mean-squared leave-one-out error.

Solution: Constant model

• the vector of training errors ei = yi−ŷi = [−0.2167, 0.4833, 0.2833,−0.2167,−0.7167, 0.3833]

• the vector of leave-one-out errors e−ii = yi−ŷ−ii = [−0.26, 0.58, 0.34,−0.26,−0.86, 0.46]

• the mean-squared training error = 0.178

• the mean-square leave-one-out error = 0.2564

1NN model:

• the vector of training errors ei = yi − ŷi = [000000]

• the vector of leave-one-out errors e−i = yi− ŷ−ii = [0.5, 0.7, 1,−0.5,−0.5,−0.1]
[0.5, 0.7, 1,−0.5,−1,−0.1]

• the mean-squared training error =0

• the mean-squared leave-one-out error =0.375 or 0.5

3NN model

• the vector of training errors ei = yi − ŷi = [0, 0.6333, 0.5, 0,−0.5, 0.1667]

• the vector of leave-one-out errors e−i = yi−ŷ−ii = [−0.2333, 0.7, 0.6667, 0,−0.6667, 0.5333]

• the mean-squared training error =0.1548

• the mean-squared leave-one-out error=0.2862

10. Consider a classification task with three binary inputs and one binary target where
the conditional distribution is

x1 x2 x3 P (y = 1|x1, x2, x3)

0 0 0 0.8
0 0 1 0.9
0 1 0 0.5
0 1 1 1
1 0 0 0.8
1 0 1 0.1
1 1 0 0.1
1 1 1 0

Suppose that all the input configurations have the same probability.

Let the classifier be the rule:

IF x1 = 0 OR x2 = 0 THEN ŷ = 1 ELSE ŷ = 0.

Suppose we have a test set of size N = 10000.

Considering the class 1 as the positive class, for this classifier compute:
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• the confusion matrix,

• the precision,

• the specificity (true negative rate) and

• the sensitivity (true positive rate)

Solution:

• the confusion matrix,

x1 x2 x3 y = 1 ŷ = 1 TP FP TN FN

0 0 0 1000 1250 1000 250 0 0
0 0 1 1125 1250 1125 125 0 0
0 1 0 625 1250 625 625 0 0
0 1 1 1250 1250 1250 0 0 0
1 0 0 1000 1250 1000 250 0 0
1 0 1 125 1250 125 1125 0 0
1 1 0 125 0 0 0 1125 125
1 1 1 0 0 0 0 1250 0

ŷ = 1 ŷ = 0

y = 1 TP=5125 FN=125

y = 0 FP=2375 TN=2375

• the precision = 5125/(5125+2375)=0.68

• the specificity (true negative rate) = 2375/(2375+2375)=0.5

• the sensitivity (true positive rate) = 5125/(5125+125)=0.976

11. Let us consider the following classification dataset where y is the binary target.

x1 x2 y

-4 7.0 1
-3 -2.0 1
-2 5.0 0
-1 2.5 1
1 1.0 0
2 4.0 1
3 6.0 0
4 3.0 1
5 -1.0 0
6 8.0 0

• Consider the 1st classifier: IF x1 > h THEN ŷ = 1 ELSE ŷ = 0
Trace its ROC curve (considering 1 as the positive class)

• Consider the 2nd classifier: IF x2 > k THEN ŷ = 0 ELSE ŷ = 1
Trace its ROC curve (considering 1 as the positive class)

• Which classifier is the best one (1st/2nd)?

Solution:

• 1st classifier ROC curve (considering 1 as the positive class):
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• 2nd classifier ROC curve (considering 1 as the positive class):
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• Which classifier is the best one (1st/2nd)? The 2nd.

12. Consider a binary classification task and the training set

x1 x2 y

1 1 -1
2 0.5 -1
1.5 2.5 -1
3 1.5 1
2.5 3 1
4 2.5 1

Consider a linear perceptron initialised with the boundary line x2 = 2 which classifies
as positive the points over the line. The student should:

1. Perform one step of gradient descent with stepsize 0.1 and compute the updated
coefficients of the perceptron line with equation

β0 + β1x1 + β2x2 = 0

2. Trace the initial boundary line (in black), the updated boundary line (in red)
and the training points.

Solution:

In the initial perceptron β0 = −2, β1 = 0 and β2 = 1. The misclassified points are
the third and the fourth (opposite label). Since

∂R

∂β
= −

∑
miscl

yixi =

[
1.5
2.5

]
−
[

3
1.5

]
=

[
−1.5

1

]
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and
∂R

∂β0
= −

∑
miscl

yi = 0

after one iteration β0 remains the same while[
βt+1

1

βt+1
2

]
=

[
βt1
βt2

]
− 0.1 ∗

[
−1.5

1

]
=

[
0
1

]
+

[
0.15
−0.1

]
=

[
0.15
0.9

]
Updated coefficients of the perceptron line are then

• β0 = −2

• β1 = 0.15

• β2 = 0.9

13. Consider the data set in exercise 9 and fit to it a Radial Basis Function with 2 basis
functions having as parameters µ(1) = −0.5 and µ(2) = 0.5. The equation of the
basis function is

ρ(x, µ) = exp−(x−µ)2

The student should

1. write in matrix notation the linear system to be solved for obtaining the weights
of the radial basis function

2. compute the weights of the radial basis function

Hint:

A =

[
a11 a12

a12 a22

]
⇒ A−1 =

1

a11a22 − a2
12

[
a22 −a12

−a12 a11

]
Solution:

1. matrix notation w = (X ′X)−1X ′Y where

X =


0.779 0.105
0.961 0.527
0.779 0.779
0.698 0.852
0.613 0.914
0.445 0.990


2. weights of the radial basis function : w = [1.25,−0.27]

14. Let us consider a classification task with 3 binary inputs and one binary output.
Suppose we collected the following training set

x1 x2 x3 y

0 1 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
0 1 1 0
1 0 1 0
1 0 0 0
1 1 0 0
0 1 1 0

1. Estimate the following quantities by using the frequency as estimator of prob-
ability
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• Prob {y = 1}
• Prob {y = 1|x1 = 0}
• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0}

2. Compute the classification returned by using the Naive Bayes Classifier for the
input x1 = 0,x2 = 0,x3 = 0.

3. Suppose we test a classifier for this task and that we obtain a misclassification
error equal to 20%. Is it more accurate than a zero classifier, i.e. a classifier
returning always zero?

Solution: Let us note that N = 12

1. • P̂rob {y = 1} = 2/12 = 1/6

• P̂rob {y = 1|x1 = 0} = 1
6

• P̂rob {y = 1|x1 = 0,x2 = 0,x3 = 0} cannot be estimated using the fre-
quency since there is no observation where x1 = 0,x2 = 0,x3 = 0

2. Since

P̂rob {y = 1|x1 = 0,x2 = 0,x3 = 0} ∝

P̂rob {x1 = 0|y = 1} P̂rob {x2 = 0|y = 1} P̂rob {x3 = 0|y = 1} P̂rob {y = 1} =

(0.5 ∗ 0.5 ∗ 0.5 ∗ 1/6) = 0.02

and

P̂rob {y = 0|x1 = 0,x2 = 0,x3 = 0} ∝

P̂rob {x1 = 0|y = 0} P̂rob {x2 = 0|y = 0} P̂rob {x3 = 0|y = 0} P̂rob {y = 0} =

= (5/10 ∗ 4/10 ∗ 5/10 ∗ 5/6) = 0.08

the NB classification is 0

3. A zero classifier would return always the class with the highest a priori prob-
ability, that is the class 0. Its misclassification error would be then 1/6. Since
1/5 > 1/6 the classifier is less accurate than the zero classifier.

15. Let us consider a classification task with 3 binary inputs and one binary output.
Suppose we collected the following training set

x1 x2 x3 y

0 1 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
0 1 1 0
1 0 1 0
1 0 0 0
1 1 0 0
0 1 1 0

1. Estimate the following quantities by using the frequency as estimator of prob-
ability

• Prob {y = 1}
• Prob {y = 1|x1 = 0}
• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0}
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2. Compute the classification returned by using the Naive Bayes Classifier for the
input x1 = 0,x2 = 0,x3 = 0.

3. Suppose we test a classifier for this task and that we obtain a misclassification
error equal to 20%. Is it working better than a zero classifier, i.e. a classifier
ignoring the value of the inputs?

Solution: Let us note that N = 12

1. • P̂rob {y = 1} = 2/12 = 1/6

• P̂rob {y = 1|x1 = 0} = 1
6

• P̂rob {y = 1|x1 = 0,x2 = 0,x3 = 0} cannot be estimated using the fre-
quency since there is no observation where x1 = 0,x2 = 0,x3 = 0

2. Since

P̂rob {y = 1|x1 = 0,x2 = 0,x3 = 0} ∝

P̂rob {x1 = 0|y = 1} P̂rob {x2 = 0|y = 1} P̂rob {x3 = 0|y = 1} P̂rob {y = 1} =

(0.5 ∗ 0.5 ∗ 0.5 ∗ 1/6) = 0.02

and

P̂rob {y = 0|x1 = 0,x2 = 0,x3 = 0} ∝

P̂rob {x1 = 0|y = 0} P̂rob {x2 = 0|y = 0} P̂rob {x3 = 0|y = 0} P̂rob {y = 0} =

(5/10 ∗ 4/10 ∗ 5/10 ∗ 5/6) = 0.08

the NB classification is 0

3. A zero classifier would return always the class with the highest a priori prob-
ability, that is the class 0. Its misclassification error would be then 1/6. Since
1/5 > 1/6 the classifier is less accurate than the zero classifier.

16. Consider a regression task with input x and output y. Suppose we observe the
following training set

X Y

0 .1 1
0 0.5
-0.3 1.2
0.2 1
0.4 0.5
0.1 0
-1 1.1

and that the prediction model is constant. Compute an estimation of its mean
integrated squared error by leave-one-out.

Solution: Since the leave-one-out error is

e−ii = yi −
∑N
j=1,j 6=i yj

N − 1

we can compute the vector of errors in leave-one-out

e−1
1 1- 0.716=0.283
e−2

2 0.5- 0.8= -0.3
e−3

3 1.2- 0.683=0.516
e−4

4 1- 0.716=0.283
e−5

5 0.5- 0.8= -0.3
e−6

6 0- 0.883=-0.883
e−7

7 1.1- 0.7=0.4

and then derive the MISE estimation

M̂ISEloo =

∑N
i=1(e−ii )2

N
= 0.22
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17. Consider a regression task with input x and output y. Suppose we observe the
following training set

X Y

0 .1 1
0 0.5
-0.3 1.2
0.3 1
0.4 0.5
0.1 0
-1 1.1

and that the prediction model is a KNN (nearest neighbour) where K = 1 and the
distance metric is euclidean. Compute an estimation of its mean squared error by
leave-one-out.

Solution:

The leave-one-out error is
e−ii = yi − y∗i

where y∗i is the value of the target associated to x∗i and x∗i is the nearest neighbour
of xi. Once we rank the training set according to the input value

X Y

-1 1.1
-0.3 1.2
0 0.5
0.1 1
0.1 0
0.3 1
0.4 0.5

we can compute the vector of errors in leave-one-out

e−1
1 1.1-1.2=-0.1
e−2

2 1.2- 0.5= 0.7
e−3

3 0.5- 1=-0.5
e−4

4 1- 0=1
e−5

5 0- 1= -1
e−6

6 1-0.5=0.5
e−7

7 0.5- 1=-0.5

and then derive the MISE estimation

M̂ISEloo =

∑N
i=1(e−ii )2

N
= 0.464

18. Consider a regression task with input x and output y. Suppose we observe the
following training set

X Y

0.5 1
1 1
-1 1
-0.25 1
0 0.5
0.1 0
0.25 0.5

Trace the estimation of the regression function returned by a KNN (nearest neighbor)
where K = 3 on the interval [−2, 1].

Solution: The resulting graph is piecewise constant and each piece has an ordinate
equal to the mean of three points. Once ordered the points according to the abscissa
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X Y

x1 -1 1
x2 -0.25 1
x3 0 0.5
x4 0.1 0
x5 0.25 0.5
x6 0.5 1
x7 1 1

these are the five sets of 3 points

x1, x2, x3 ⇒ ŷ = 2.5/3 (8.5.57)

x2, x3, x4 ⇒ ŷ = 0.5 (8.5.58)

x3, x4, x5 ⇒ ŷ = 1/3 (8.5.59)

x4, x5, x6 ⇒ ŷ = 0.5 (8.5.60)

x5, x6, x7 ⇒ ŷ = 2.5/3 (8.5.61)

The transitions from xi, xi+1, xi+2 to xi+1, xi+2, xi+3, i = 1, . . . , 4 occur at the x = q
points where q − xi = xi+3 − q ⇒ q =

xi+3+xi
2
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19. Consider a supervised learning problem, a training set of size N = 50 and a neural
network predictor with a single hidden layer. Suppose that we are able to compute
the generalisation error for different number H of hidden nodes and we discover
that the lowest generalisation error occurs for H = 3. Suppose now that the size of
the training set increases (N = 500). For which value of H would you expect the
lowest generalisation error? Equal, larger or smaller than 3? Justify your answer by
reasoning on the bias/variance trade-off in graphical terms (Figure).

Solution:

According to 5.6.41 the MISE generalisation error may be decomposed as the sum
of the squared bias, the model variance and the noise variance.

In Figure 8.29 we depict the first setting in black and the second one (i.e. increased
training set size) in red.

The relationship between the squared bias and the capacity of the model (number
H) is represented by the dashed line and the relationship between the variance
and the capacity is represented by the continuous thin line. The MISE (taking its
minimum in H = 3) is represented by the black thick line. Note that in the figure
we do not consider the noise variance since we are comparing two models for the
same regression task and then the noise variance is in this case an irrelevant additive
term.

If the training set size increases we can expect a variance reduction. This means
that the minimum of the MISE term will move to right. We should then expect that
the optimal number of hidden layers is H > 3 .
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Note that additional observations have no impact on the squared bias while they
contribute to reduce the variance (red thin line). From the red thick line denoting
the MISE of the second setting, it appears that arg minHMSE(H) moved to the
right.
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Figure 8.29:

20. Consider a feedforward neural network with two inputs, no hidden layer and a
logistic activation function. Suppose we want to use backpropagation to compute
the weights w1 and w2 and that a training dataset is collected. The student should

1. Write the equation of the mapping between x1, x2 and y.

2. Write the two iterative backpropagation equations to compute w1 and w2.
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x1 x2

y

w2w1

Solution:

1. ŷ = g(z) = g(w1x1 + w2x2) where g(z) = 1
1+e−z and g′(z) = e−z

(1+e−z)2

2. The training error is

E =

∑N
i=1(yi − ŷi)2

N

For j = 1, 2

∂E

∂wj
= − 2

N

N∑
i=1

(yi − ŷi)
∂ŷi
∂wj

where
∂ŷi
∂wj

= g′(zi)xij

where zi = w1x1i + w2x2i

The two backpropagation equations are then

wj(k + 1) = wj(k) + η
2

N

N∑
i=1

(yi − ŷi)g′(zi)xij , j = 1, 2

21. Consider a binary classification problem and the following estimations of the condi-

tional probability P̂rob {y = 1|x} vs. the real value of the target.

Trace a precision recall and the AUC curve

P̂rob {y = 1|x} CLASS

0.6 1
0.5 -1
0.99 1
0.49 -1
0.1 -1
0.26 -1
0.33 1
0.15 -1
0.05 -1

Solution: Let us first order the dataset in terms of ascending score
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P̂rob {y = 1|x} CLASS

0.05 -1
0.10 -1
0.15 -1
0.26 -1
0.33 1
0.49 -1
0.50 -1
0.60 1
0.99 1

We let the threshold range over all the values of the score. For each value of the
threshold we define as positively classified the terms having a score bigger than the
threshold and negatively classified the terms having a score lower equal than the
threshold.

For instance for Thr=0.26 this is the returned classification

P̂rob {y = 1|x} ŷ CLASS

0.05 -1 -1
0.10 -1 -1
0.15 -1 -1
0.26 -1 -1
0.33 1 1
0.49 1 -1
0.50 1 -1
0.60 1 1
0.99 1 1

Then we measure the quantity of TP, FP, TN and FN and FPR = FP/(TN+FP ),
TPR = TP/(TP + FN)

Threshold TP FP TN FN FPR TPR

0.05 3 5 1 0 5/6 1
0.10 3 4 2 0 2/3 1
0.15 3 3 3 0 1/2 1
0.26 3 2 4 0 1/3 1
0.33 2 2 4 1 1/3 2/3
0.49 2 1 5 1 1/6 2/3
0.50 2 0 6 1 0 2/3
0.60 1 0 6 2 0 1/3
0.99 0 0 6 3 0 0
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22. Let us consider a classification task with 3 binary inputs and one binary output.
Suppose we collected the following training set
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x1 x2 x3 y

1 1 0 1
0 0 1 0
0 1 0 0
1 1 1 1
0 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0
0 1 0 0
1 1 1 1

1. Estimate the following quantities by using the frequency as estimator of prob-
ability

• Prob {y = 1}
• Prob {y = 1|x1 = 0}
• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0}

2. Consider a Naive Bayes classifier and compute its classifications if the same
dataset is used also for testing

3. Trace the ROC curve associated to the Naive Bayes classifier if the same dataset
is used also for testing. (Hint: make the assumption that the denominator of
the Bayes formula is 1 for all test points)

Solution:

1.

• Prob {y = 1} = 3/11

• Prob {y = 1|x1 = 0} = 0

• Prob {y = 1|x1 = 0,x2 = 0,x3 = 0} = 0

2. Note that the values of x1 are identical to the ones of y. Then Prob {x1 = A|y = ¬A} =
0. It follows that if use a Naive Bayes and the test dataset is equal to the train-
ing set all the predictions will coincide with the values of x1. The training error
is then zero

3. Since all the predictions are correct the ROC curve is equal to 1 for all FPR
values

23. Let us consider a binary classification task where the input x ∈ R2 is bivariate and
the categorical output variable y may take two values: 0 (associated to red) and
1 (associated to green). Suppose that the a-priori probability is p(y = 1) = 0.2
and that the inverse (or class-conditional) distributions are the bivariate Gaussian
distributions p(x|y = 0) = N (µ0,Σ0) and p(x|y = 1) = N (µ1,Σ1) where

• µ0 = [0, 0]T

• µ1 = [1, 1]T

and both Σ0 and Σ1 are diagonal identity matrices. The student should

1. by using the R function rmvnorm, sample a dataset of N = 1000 input/output
observations according to the conditional distribution described above,

2. visualise in a 2D graph the dataset by using the appropriate colors,

3. fit a logistic classifier to the dataset (see details below),

4. plot the evolution of the cost function J(α) during the gradient-based minimi-
sation,

5. plot in the 2D graph the decision boundary.
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Logistic regression estimates

P̂ (y = 1|x) =
expx

TαN

1 + expxTαN
=

1

1 + exp−xTαN
, P̂ (y = 0|x) =

1

1 + expxTαN

where
αN = arg min

α
J(α)

and

J(α) =

N∑
i=1

(
−yixTi α+ log(1 + expx

T
i α)
)

Note that α is the vector [α0, α1, α2]T and that xi = [1, xi1, xi2]T , i = 1, . . . , N .

The value of αN has to be computed by gradient-based minimisation of the cost
function J(α) by performing I = 200 iterations of the update rule

α(τ) = α(τ−1) − η dJ(α(τ−1))

dα
, τ = 1, . . . , I

where α(0) = [0, 0, 0]T and η = 0.001.

Solution:

See the file Exercise5.pdf in the directory gbcode/exercises of the companion R
package (Appendix G).

24. Consider a binary classification task where the input x ∈ R2 is bivariate and the
categorical output variable y may take two values: 0 (associated to red) and 1
(associated to green). Suppose that the a-priori probability is p(y = 1) = 0.2 and
that the inverse (or class-conditional) distributions are

• green/cross class : mixture of three Gaussians

p(x|y = 1) =

3∑
i=1

wiN (µ1i,Σ)

where in µ11 = [1, 1]T , µ12 = [−1,−1], µ13 = [3,−3]T , and w1 = 0.2, w2 = 0.3.

• red/circel class: bivariate Gaussian p(x|y = 0) = N (µ0,Σ) where µ0 = [0, 0]T

The matrix Σ is a diagonal identity matrix.

The student should

• by using the R function rmvnorm, sample a dataset of N = 1000 input/output
observations according to the conditional distributions described above,

• visualise in a 2D graph the dataset by using the appropriate colours/marks,

• plot the ROC curves of the following classifiers

1. linear regression coding the two classes by 0 and 1,

2. Linear Discriminant Analysis where σ2 = 1,

3. Naive Bayes where the univariate conditional distributions are Gaussian,

4. k Nearest Neighbour with k = 3, 5, 10.

The classifiers should be trained and tested on the same training set.

• Choose the best classifier on the basis of the ROC curves above.

No R package should be used to implement the classifiers.

Solution:

See the file Exercise6.pdf in the directory gbcode/exercises of the companion R
package (Appendix G).



Chapter 9

Model averaging approaches

All the techniques presented so far require a model selection procedure where dif-
ferent model structures are assessed and compared in order to attain the best repre-
sentation of the data. In model selection the winner-takes-all approach is intuitively
the approach that should work the best. However, recent results in machine learning
show that the final accuracy can be improved not by choosing the model structure
which is expected to predict the best but by creating a model combining the output
of models with different structures. The reason is that every hypothesis h(·, αN ) is
only an estimate of the real target and, like any estimate, is affected by a bias and a
variance term. The theoretical results of Section 3.10 show that a variance reduction
can be obtained by combining uncorrelated estimators. This simple idea underlies
some of the most effective techniques recently proposed in machine learning. This
chapter will sketch some of them.

9.1 Stacked regression

Suppose we have m distinct predictors hj(·, αN ), j = 1, . . . ,m obtained from a
given training set DN . For example, a predictor could be a linear model fit on some
subset of the variables, a second one a neural network and a third one a regression
tree. The idea of averaging models is to design an average estimator

m∑
j=1

βjhj(·, αN )

by linear combination which is expected to be more accurate than each of the
estimators taken individually.

A simple way to estimate the weights β̂j is to perform a least-squares regression
of the output y on the m inputs hj(·, αN ). The training set for this regression is
then made by DN = {hi, yi}

y =


y1

y2

...
yN

 H =


h1

h2

...
hN

 =


h1(x1, αN ) h2(x1, αN ) . . . hm(x1, αN )
h1(x2, αN ) h2(x2, αN ) . . . hm(x2, αN )

...
...

...
...

h1(xN , αN ) h2(xN , αN ) . . . hm(xN , αN )


where hi, i = 1, . . . , N is a vector of m terms.

Once computed the least-squares solution β̂ the combined estimator is

hcm(x) =

m∑
j=1

β̂jhj(x, αN )

283
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Despite its simplicity, the least-squares approach might produce poor results
since it does not take into account the correlation existing among the hj and induced
by the fact that all of them are estimated on the same training set DN .

Wolpert [170] presented an interesting idea, called stacked generalisation for
combining estimators without suffering of the correlation problem. This proposal
was translated in statistical language by Breiman who introduced the stacked re-
gression principle [34].

The idea consists in estimating the m parameters β̂j by solving the following
optimisation task

β̂ = arg min
β

N∑
i=1

yi − m∑
j=1

βjh
(−i)
j (xi)

2

where h
(−i)
j (xi) is the leave-one-out estimate (6.8.2.3) of the jth model.

In other terms the parameters are obtained by performing a least-squares regres-

sion of the output y on the m inputs hj(·, α(−i)
N ). The training set for this regression

is then made by DN = {h−i , yi}, i = 1, . . . , N

y =


y1

y2

...
yN

 H =


h−1
h−2
...
h−N

 =


h1(x1, α

(−1)
N ) h2(x1, α

(−1)
N ) . . . hm(x1, α

(−1)
N )

h1(x2, α
(−2)
N ) h2(x2, α

(−2)
N ) . . . hm(x2, α

(−2)
N )

...
...

...
...

h1(xN , α
(−N)
N ) h2(xN , α

(−N)
N ) . . . hm(xN , α

(−N)
N )


where hj(xi, α

(−i)
N ) is the predicted outcome in xi of the jth model trained on

DN with the ith observation (xi, yi) set aside.

By using the cross-validated predictions hj(xi, α
(−i)
N ) stacked regression avoids

giving unfairly high weight to models with higher complexity. It was shown by
Breiman, that the performance of the stacked regressor improves when the coeffi-
cients β̂ are constrained to be non-negative. There is a close connection between
stacking and winner-takes-all model selection. If we restrict the minimisation to
weight vectors w that have one unit weight and the rest zero, this leads to the
model choice returned by the winner-takes-all based on the leave-one-out. Rather
than choose a single model, stacking combines them with estimated optimal weights.
This will often lead to better prediction, but less interpretability than the choice of
only one of the m models.

9.2 Bagging

A learning algorithm is informally called unstable if small changes in the training
data lead to significantly different models and relatively large changes of accuracy.
Unstable learners can have low bias but have typically high variance. Unstable
methods can have their accuracy improved by perturbing (i.e. generating multiple
versions of the predictor by perturbing the training set or learning method) and
combining. Breiman calls these techniques P&C methods.

The bagging technique is a P&C technique which aims to improve accuracy for
unstable learners by averaging over such discontinuities. The philosophy of bagging
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Figure 9.1: Histogram of misclassification rates of resampled trees: the vertical line
represents the misclassification rate of the bagging predictor.

is to improve the accuracy by reducing the variance: since the generalisation error of
a predictor h(·,αN ) depends on its bias and variance, we obtain an error reduction if
we remove the variance term by replacing h(·,αN ) with EDN

[h(·,αN )]. In practice,
since the knowledge of the sampling distribution of the predictor is not available, a
non-parametric estimation is required.

Consider a dataset DN and a learning procedure to build a hypothesis αN from
DN . The idea of bagging or bootstrap aggregating is to imitate the stochastic process

underlying the realisation of DN . A set of B repeated bootstrap samples D
(b)
N ,

b = 1, . . . , B are taken from DN . A model α
(b)
N is built for each D

(b)
N . A final

predictor is built by aggregating the B models α
(b)
N . In the regression case, the

bagging predictor is

hbag(x) =
1

B

B∑
b=1

h(x, α
(b)
N )

In the classification case, a majority vote is used.

R script

The R script ModAver/bagging.R shows the efficacy of bagging as a remedy against
overfitting.

Consider a dataset DN = {xi, yi}, i = 1, . . . , N of N = 100 i.i.d. normally dis-
tributed inputs x ∼ N ([0, 0, 0], I). Suppose that y is linked to x by the input/output
relation

y = x2
1 + 4 log(|x2|) + 5x3 + ε

where ε ∼ N (0, 0.25) represents the noise. Let us train a single-hidden-layer neural
network with s = 25 hidden neurons on the training set (Section 8.1.1). The

prediction accuracy on the test set (Nts = 100) is M̂ISEts = 70.86. Let us apply a
bagging combination with B = 50 (R-file. The prediction accuracy on the test set

of the bagging predictor is M̂ISEts = 6.7. This shows that the bagging combination
reduces the overfitting of the single neural network. Below there is the histogram

of the M̂ISEts accuracy of each bootstrap repetition. Figure (9.1) shows that the
bagging predictor is much better than average.

•
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Tests on real and simulated datasets showed that bagging can give a substantial
gain of accuracy. The vital element is the instability of the prediction method.
If perturbing the learning set can cause significant changes in the predictor con-
structed, then bagging can improve accuracy. On the other hand, it can slightly
degrade the performance of stable procedures. There is a crossover point between
instability and stability at which bagging stops improving.

Bagging demands the repetition of B estimations of h(·, α(b)
N ) but avoids the

use of expensive validation techniques (e.g. cross-validation). An open question,
as in bootstrap, is to decide how many bootstrap replicates to carry out. In his
experiments, Breiman suggests that B ≈ 50 is a reasonable figure.

Bagging is an ideal procedure for parallel computing. Each estimation of h(·, α(b)
N ),

b = 1, . . . , B can proceed independently of the others. At the same time, bagging
is a relatively easy way to improve an existing method. It simply needs adding

1. a loop that selects the bootstrap sample and sends it to the learning machine
and

2. a back-end to perform the aggregation.

Note, however, that if the original learning machine has an interpretable struc-
ture (e.g. classification tree), this is lost for the sake of increased accuracy.

9.3 Boosting

Boosting is one of the most powerful learning ideas introduced in the last ten years.
Boosting is a general method which attempts to boost the accuracy of any given

learning algorithm. It was originally designed for classification problems, but it
can profitably be extended to regression as well. Boosting [71, 146] encompasses a
family of methods. The focus of boosting methods is to produce a series of weak
learners in order to produce a powerful combination. A weak learner is a learner
that has accuracy only slightly better than chance.

The training set used for each member of the series is chosen based on the
performance of the earlier classifier(s) in the series. Examples that are incorrectly
predicted by previous classifiers in the series are chosen more often than examples
that were correctly predicted.

Thus Boosting attempts to produce new classifiers that are better able to predict
examples for which the current ensemble’s performance is poor. Unlike Bagging,
the resampling of the training set is dependent on the performance of the earlier
classifiers. The two most important types of boosting algorithms are the Ada Boost
(Adaptive Boosting) algorithm (Freund, Schapire, 1997) and the Arcing algorithm
(Breiman, 1996).

9.3.1 The Ada Boost algorithm

Consider a binary classification problem where the output takes values in {−1, 1}.
Let DN be the training set. A classifier is a predictor h(·) which given an input
x, produces a prediction taking one of the values {−1, 1}. A weak classifier is one
whose misclassification error rate is only slightly better than random guessing.

The purpose of boosting is to sequentially apply the weak classification algo-
rithm to repeatedly modified versions of the data, thereby producing a sequence of
classifiers hj(·), j = 1, . . . ,m. The predictions of the m weak classifiers are then
combined through a weighted majority vote to produce the final prediction

hboo = sign

 m∑
j=1

αjhj(x, αN )


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The weights αj of the different classifiers are computed by the algorithm. The
idea is to give stronger influence to the more accurate classifiers in the sequence.
At each step, the boosting algorithm samples N times from a distribution w on the
training set which put a weight wi on each example (xi, yi), i = 1, . . . , N of DN

Initially, the weights are all set to wi = 1/N so that the first step simply trains
the classifier in the standard manner. For each successive iteration j = 1, . . . ,m
the probability weights are individually modified, and the classification algorithm
is reapplied to the resampled training set.

At the generic jth step the observations that were misclassified by the classifier
hj−1(·) trained at the previous step, have their weights wi increased, whereas the
weights are decreased for those that were classified correctly. The rationale of the
approach is that, as the iterations proceed, observations that are hard to classify
receive ever-increasing influence and the classifier is forced to concentrate on them.
Note the presence in the algorithm of two types of weights: the weights αj , j =
1, . . . ,m that measure the importance of the classifiers and the weights wi, i =
1, . . . , N that measure the importance of the observations.

Weak learners are added until some desired low training error has been achieved.
This is the algorithm in detail:

1. Initialise the observation weights wi = 1/N , i = 1, . . . , N .

2. For j = 1 to m:

(a) Fit a classifier hj(·) to the training data obtained by resampling DN

using weights wi.

(b) Compute the misclassification error on the training set

M̂ME
(j)

emp =

∑N
i=1 wiI(yi 6= hj(xi))∑N

i=1 wi

(c) Compute

αj = log((1− M̂ME
(j)

emp)/M̂ME
(j)

emp)

Note that αj > 0 if M̂ME
(j)

emp ≤ 1/2 (otherwise we stop or we restart)

and that αj gets larger as M̂ME
(j)

emp gets smaller.

3. (d) For i = 1, . . . , N set

wi ← wi

{
exp[−αj ] if correctly classified

exp[αj ] if incorrectly classified

(e) The weights are normalised to ensure that wi represents a true distribu-
tion.

4. Output of the weighted majority vote

hboo = sign

 m∑
j=1

αjhj(x, αN )


R script

The R script ModAver/boosting.R tests the performance of the Ada Boost algo-
rithm in a classification task. Consider the medical dataset Pima obtained by a
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statistical survey on women of Pima Indian heritage. This dataset reports the pres-
ence of diabetes in Pima Indian women together with other clinical measures (blood
pressure, insulin, age,...). The classification task is to predict the presence of dia-
betes as a function of clinical measures. We consider a training set of N = 40 and
a test set of 160 points. The classifier is a simple classification tree which returns

a misclassification rate M̂MEts = 0.36. We use a boosting procedure with m = 15
to improve the performance of the weak classifier. The misclassification rate of the

boosted classifier is M̂MEts = 0.3.

•

Boosting has its roots in a theoretical framework for studying machine learning
called the PAC learning model. Freund and Scapire proved that the empirical error
of the final hypothesis hboo is at most

m∏
j=1

[
2

√
M̂ME

(j)

emp ∗ (1− M̂ME
(j)

emp)

]
They also showed how to bound the generalisation error.

9.3.2 The arcing algorithm

This algorithm was proposed as a modification of the original Ada Boost algorithms
by Breiman. It is based on the idea that the success of boosting is related to the
adaptive resampling property where increasing weight is placed on those examples
more frequently misclassified. ARCing stays for Adaptive Resampling and Combin-
ing. The complex updating equations of Ada Boost are replaced by much simpler
formulations. The final classifier is obtained by unweighted voting. This is the
ARCing algorithm in detail:

1. Initialise the observation weights wi = 1/N , i = 1, . . . , N .

2. For j = 1 to m:

(a) Fit a classifier hj to the training data obtained by resampling DN using
weights wi.

(b) Let ei the number of misclassifications of the ith example by the j clas-
sifiers h1, . . . , hj .

(c) The updated weights are defined by

wi =
1 + e4

i∑N
i=1(1 + e4

i )

3. The output is obtained by unweighted voting of the m classifiers hj .

R script

The R file ModAver/arcing.R tests the performance of the ARCing algorithm in
a classification task. Consider the medical dataset Breast Cancer obtained by Dr.
William H. Wolberg (physician) at the University of Wisconsin Hospital in USA.
This dataset reports the class of cancer (malignant and benign) and other prop-
erties (clump thickness, uniformity of cell size, uniformity of cell shape, marginal
adhesion,...). The classification task is to predict the class of breast cancer on the
basis of clinical measures. We consider a training set of size N = 400 and a test set
of size 299. The classifier is a simple classification tree which returns a misclassifi-

cation rate M̂MEts = 0.063. We use an arcing procedure with m = 15. It gives a

misclassification rate M̂MEts = 0.010.
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•

Boosting is a recent and promising technique which is simple and easy to program.
Moreover, it has few parameters (e.g. max number of classifiers) to tune. Boosting
methods advocate a shift in the attitude of the learning-system designer: instead
of trying to design a learning algorithm which should be accurate over the entire
space, she can instead focus on finding weak algorithms that only need to be better
than random.

Furthermore, a nice property of Ada Boost is its ability to identify outliers.

9.3.3 Bagging and boosting

This section makes a short comparison of bagging and boosting techniques. First of
all, in terms of bias/variance trade-off, it is important to stress that the rationale of
bagging is to reduce variance of low bias (and then high variance) learners trained
on i.d. (identically distributed) data while boosting aims to reduce sequentially the
bias of weak learners trained on non i.d. data.

Like bagging, boosting avoid the cost of heavy validation procedures and, like
bagging, boosting trades accuracy for interpretability. As for bagging, the main
effect of boosting is to reduce variance and it works effectively for high variance
classifiers. However, unlike bagging, boosting cannot be implemented in parallel,
since it is based on a sequential procedure.

In terms of experimental accuracy, several research works (e.g. Breiman’s work)
show that boosting seems outperforms bagging. Also, a number of recent theoretical
results show that boosting is fundamentally different from bagging [89].

Some caveats are notwithstanding worth mentioning: the actual performance of
boosting on a particular problem is dependent on the data and the nature of the
weak learner. Also boosting can fail to perform well given insufficient data, overly
complex weak hypothesis, and definitely too weak hypothesis.

9.4 Random Forests

Ensemble learning is efficient when it combines low bias and independent estimators,
like non/pruned decision trees.

Random Forests (RF) is an ensemble learning technique proposed by Breiman [36]
which combines bagging and random feature selection by using a large number of
non/pruned decision trees. The rationale of RF is to reduce the variance by decor-
relating as much as possible the single trees. This is achieved in the tree-growing
process through a random selection of the input variables. In a nutshell, the algo-
rithm consists in:

1. generating by bootstrap a set of B training sets,

2. fitting to each of them a decision tree hb(·, αb), b = 1, . . . , B where the set of
variables considered for each split (Section 8.1.4.3) is a random subset of size
n′ of the original one (feature bagging),

3. storing at each split for the corresponding split variable, the improvement of
the cost function,

4. returning as the final prediction the average of the B predictions

hrf(x) =
1

B

B∑
b=1

hb(x, αb)

in a regression task and the majority vote in a classification task,
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5. returning for each variable an importance measure.

Suppose that the B trees in the forest are almost unbiased, have a comparable
variance Var [hb] = σ2 and a mutual correlation ρ. The RF regression predictor hrf

is then almost unbiased and from (2.19.95) its variance is

Var [hrf] =
(1− ρ2)

B
+ ρσ2

It appears then by increasing the forest size B and making the trees as uncorrelated
as possible, a Random Forest strategy reduces the resulting variance.

A rule of thumb consists of setting the size of the random subset to n′ =
√
n. The

main hyperparameters of RF are the hyperparameters of single trees (e.g. depth,
max number of leaves), the number B of trees and the size n′ of the random feature
set. Note that by reducing n′ we make the trees more decorrelated, yet we increase
the bias of each single tree (and then of the RF) by constraining its number of
features. In particular, a too small number n′ may be detrimental to accuracy in
configurations with very large n and small number of informative features.

9.4.1 Why are Random Forests successful?

Random Forests are often considered among the best ”off-the-shelf” learning al-
gorithms since they do not require complex tuning to perform reasonably well on
challenging tasks. There are many reasons for their success [69]: (i) they use an
out-of-bag (Section 5.9.1) strategy to effectively manage the bias/variance trade-off
and to assess the importance of input variables, (ii) since based on trees, they easily
cope with mixtures of numeric and categorical predictor variables, (iii) they are
resilient to input outliers and invariant under monotone input transformation, (iv)
they embed a feature ranking mechanism based on an importance measure related
to the average cost function decrease during splitting, (v) they are fast to construct
and can be made massively parallel and (vi) there exist a number of very effec-
tive implementations (e.g. in the R package randomForest) and enhanced version
(notably gradient boosting trees).

9.5 Gradient boosting trees

Gradient boosting (GB) trees are an enhanced version of averaging algorithms which
rely on combining m trees according to a forward stage-wise additive strategy [89].
The strategy consists of adding one component (e.g. a tree) at the time: after m
iterations, the resulting model is the sum of the M individual trees

hm(x) =

m∑
j=1

T (x, αj)

Given j−1 trees, the jth tree is learned such to compensate for the error between
the target and the current ensemble prediction hj−1(x). This means that

αj = arg min
α

N∑
i=1

L (yi, hj−1(xi) + T (xi, α)) (9.5.1)

where αj contains the jth tree parameters, e.g. the set of disjoint regions and the
local model holding in each region. Note that in the forward stage-wise philosophy,
no adjustment of the previously added trees is considered.
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It can be shown that, for a regression task with a squared error loss function L,
the solution αj corresponds to the regression tree that best predicts the residuals

ri = yi − hj−1(xi), i = 1, . . . , N

Gradient based versions exist for other differentiable loss criteria and for classi-
fication tasks. Also weighted versions of (9.5.1) exist

(αj , wj) = arg min
α,w

N∑
i=1

L (yi, hj−1(xi) + wT (xi, α))

where the contribution αj of each new tree is properly tuned.
A stochastic version of gradient boosting has been proposed in [73] where at

each iteration only a subsample of the training set is used to train the new tree.
Though gradient-boosting algorithms are considered ones of the most promising

in complex learning tasks, it is recommended to remember that their accuracy
depends, like all learning algorithms, on a number of hyperparameters, notably the
size of the constituent trees, the number m of iterations, contribution wj of each
tree, loss function degree and subsample size.

9.6 Conclusion

The averaging of ensembles of estimators relies on the counter/intuitive principle
that combining predictors is (most of the time) more convenient than selecting
(what seems to be) the best. This principle is (probably together with the idea of
regularisation) one of the most genial and effective ideas proposed by researchers in
Machine Learning1. Most state-of-the-art learning strategies do owe a considerable
part of their success to the integration of the combination principle. Such principle
is so powerful that some authors suggest nowadays not to include combination in
the assessment of learning strategies (e.g. in new publications) given the risk that
the only visible beneficial effect is the one due to the combination.

The fact that this idea might appear counter/intuitive sheds light on the stochas-
tic nature of the learning problem and the importance of taking a stochastic per-
spective to really grasp the problem of learning and generalising from a finite set of
observations.

9.7 Exercises

1. Verify by Monte Carlo simulation the relations (3.10.34) and 3.10.33 concerning the
combination of two unbiased estimators.

Hint: define an estimation task (e.g. estimate the expected value of a random
variable) and choose two unbiased estimators.

1...and a note of distinction should be here definitely attributed to the seminal work of re-
searchers like Jerome H. Friedman and Leo Breiman.
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Chapter 10

Feature selection

In many challenging learning tasks, the number of inputs (or features) may be
extremely high: this is the case of bioinformatics [145] where the number of variables
(typically markers of biological activity at different functional levels) may go up to
hundreds of thousands. The race to high-throughput measurement techniques in
many domains allows us to easily foresee that this number could grow by several
orders of magnitude.

Using such a large number of features in learning may negatively affect general-
isation performance, especially in the presence of irrelevant or redundant features.
Nevertheless, traditional supervised learning algorithms techniques have been de-
signed for supervised tasks where the ratio between the input dimension and the
training size is small, and most inputs (or features) are informative. As a conse-
quence, their accuracy may rapidly degrade when used in tasks with few observa-
tions and a huge number of inputs.

At the same time, it is common to make the assumption that data are sparse
or possess an intrinsic low dimensional structure. This means that most input
dimensions are correlated, only a few of them contain information or equivalently
that most dimensions are irrelevant for the learning task.

For this reason, learning pipelines include more and more a feature selection
phase aiming to select a small subset of informative (or relevant) features to capture
most of the signal and avoid variance and instability issues during learning. In that
sense, feature selection can be seen as an instance of model selection problem where
the alternative models do not differ in terms of functional representation but in
terms of the used subset of inputs.

Example

This example illustrates the impact of the number of features on the model variance
in a learning task with a comparable number of features and observations. Let us
consider a linear regression dependency

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + w

where Var [w] = 0.5, β0 = 0.5, β1 = −0.5,β2 = 0.5, β3 = −0.5, β4 = 0.5. Suppose
we collect a dataset of N = 20 input/output observations where the input set
(n = 8) contains, together with the four variables x1, . . . ,x4, a set of 4 irrelevant
variables x5, . . . ,x8 .

Let us consider a set of linear regression models with an increasing number of
features, ranging from zero (constant model) to 8.

The script FeatureSel/bv linfs.R illustrates the impact of the number of fea-
tures on the average bias (estimated by Monte Carlo) and the average variance

293
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Figure 10.1: Trade-off bias/variance for different number of features. Bias and
variance are averaged over the set of N inputs.

(both analytical and Monte Carlo estimated) of the predictors. Figure 10.1 shows
that the larger is the number of features, the higher is the prediction variance. Note
that the analytical form of the variance of a linear model prediction is presented
in Section 7.1.14. The bias has the opposite trend, reaching zero once the 4 inputs
x1, . . . ,x4 are included in the regression model. Overall, the more variables are con-
sidered, the more bias is reduced at the cost of an increased variance. If a variable
has no predictive value (e.g. it belongs to the set x5, . . . ,x8), considering it merely
increases the variance with no benefit in terms of bias reduction. In general, if the
addition of a variable has a small impact on bias then the increase in prediction
variance may exceed the benefit from bias reduction [119]. The role of a feature
selection technique should be to detect those variables and remove them from the
input set.

•

The benefits of feature selection have been thoroughly discussed in literature [81,
82]:

• facilitating data visualisation and data understanding,

• reducing the measurement and storage requirements,

• reducing training and utilisation times of the final model,

• defying the curse of dimensionality to improve prediction performance.

At the same time, feature selection implies additional time for learning since it
introduces an additional layer to the search in the model hypothesis space.

10.1 Curse of dimensionality

Feature selection addresses what is known in several scientific domains as the curse
of dimensionality. This term, coined by R E Bellman, refers to all computational
problems related to large dimensional modelling tasks.

The main issue in supervised learning is that the sparsity of data increases
exponentially with the dimension n. This can be illustrated by several arguments.

Let us consider a n dimensional space and a unit volume around a query point
xq ∈ Rn (Figure 10.2) [89]. Let V < 1 be the volume of a neighbourhood hypercube
of edge d. It follows that dn = V and d = V 1/n. Figure 10.3 illustrates the link
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n=1 d=1/2  V=1/2

n= 2 d=1/2  V=1/4

n=3  d=1/2  V=1/8

Figure 10.2: Locality and dimensionality of the input space for different values of
n: unit volume (in black) around a query point (circle) containing a neighbourhood
(in red) of volume V and edge d.
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Figure 10.3: Neighbourhood volume vs. edge size for different values of n.

between neighbourhood volume V and edge size d for different values of n. It
appears that for a given neighbourhood volume V , the edge length increases by
increasing n while for a given edge length d, the neighbourhood volume decreases
by increasing n. For instance if V = 0.5 we have d = 0.7, 0.87, 0.98 for n = 2, 5, 50;
if V = 0.1 we have d = 0.3, 0.63, 0.95 for n = 2, 5, 50. This means that for n = 50
we need to have an edge length which is 95% of the unit length if we want to barely
cover 10% of the total volume.

Let us now assess the impact of dimensionality on the accuracy of a local learn-
ing algorithm (e.g. k nearest neighbour) by considering the relation between the
training set size N , the input dimension n and the number of neighbours k. If
the N points are uniformly distributed in the unit volume around the query point,
the number of neighbours k in the neighbourhood V amounts to roughly k = NV .
Given the value of N and k (and consequently the local volume V ) the edge d of the
neighbourhood increases with the dimension n and converges rapidly to one (Fig-
ure 10.4). This implies that if we use a kNN (nearest neighbour) learner for two
supervised learning tasks with same N but different n, the degree of locality of the
learner (represented by the length of d) is the smaller the larger is n. Analogously
if N and 0 < d < 1 are fixed, the number k = Ndn of neighbours in V decreases by
increasing n. In other terms, as n increases the amount of local data goes to zero
(Figure 10.5) or equivalently all data sets are sparse for large n.

Let us now consider the case where k > 0 and 0 < d < 1 (degree of locality) are
fixed and N may be adjusted (e.g. by observing more points). Since

N = k/dn

we need to exponentially grow the size of the training set N to guarantee a constant
k for increasing n. Suppose that k = 10, d = 0.1 and N = 100 for n = 1. If we
want to preserve the same number k of neighbours for increasing n then N has to
grow according to the following law

N = k/dn =
10

(1/10)n
= 10n+1

For instance we need to observe N = 106 observations for n = 5 if we want the same
degree of locality we had for n = 1. This implies that given two supervised learning
tasks (one with n = 1 and the other with n >> 1), the second should be trained
with a number N of a much higher order of magnitude (Figure 10.6) to guarantee
the same degree of locality of the n = 1 configuration.

Another interesting result about the impact of dimensionality on data distribu-
tion is the following: given N observations uniformly distributed in a ndimensional
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Figure 10.4: Neighbourhood edge size vs. dimension n (for fixed N and k)

Figure 10.5: Number of neighbours K vs. dimension n for fixed N and d
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Figure 10.6: Number of training examples required to preserve the same kind of
locality obtained for n = 1 with k = 10 and d = 0.1

unit ball centred at the origin, the median of the distance from the origin to the
closest data point is (1− 1/21/N )1/n (Figure 10.7).

All those considerations should sound like a warning for those willing to ex-
tend local learning approaches to large dimensional settings where familiar notions
of distance and closeness lose their meaning and relevance. Large dimensionality
induces high sparseness with negative impact on predictive accuracy as shown by
the bias/variance decomposition in (8.1.47). For a fixed N and by increasing n the
algorithm is more and more exposed to one of those two low generalisation con-
figurations: i) too small k, i.e. too few points are close to the query points (with
negative impact in terms of variance) or ii) too large d implying that the nearest
neighbours are not sufficiently close the query point (with negative impact on bias).

Though, from a bias/variance perspective, the curse of dimensionality is partic-
ularly harmful for local learning strategies, the other learning strategies should not
be considered immune either. A too large n/N ratio implies an overparametriza-
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Figure 10.7: Median nearest neighbour as a function of n for very large N .
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tion of the learned hypothesis and a consequent increase of the variance term in the
generalisation error which is hardly compensated by the related bias reduction. For
this reason, the adoption of a feature selection step is more and more common in
modern machine learning pipelines.

10.2 Approaches to feature selection

There are three main approaches to feature selection:

• Filter methods: they are preprocessing methods. They attempt to assess
the merits of features from the data, ignoring the effects of the selected feature
subset on the learning algorithm’s performance. Examples are methods that
select variables by ranking them through compression techniques (like PCA
or clustering) or computing correlation with the output.

• Wrapper methods: these methods assess subsets of variables according to
their usefulness to a given predictor. The method searches a good subset using
the learning algorithm itself as part of the evaluation function. The problem
boils down to a problem of stochastic state-space search. Examples are the
stepwise methods proposed in linear regression analysis (notably the leaps

subset selection algorithm available in R [16]).

• Embedded methods: they perform variable selection as part of the learn-
ing procedure and are usually specific to given learning machines. Examples
are classification trees, random forests, and methods based on regularisation
techniques (e.g. lasso)

Note that, in practice, hybrid strategies combining the three approaches above
are often considered as well. For instance in the case of a huge dimensional task
(e.g. n > 1000K as in epigenetics) it would make sense to first reduce the size of
features to a more reasonable size (e.g. some thousands or hundreds of features) by
filtering and then use some search approaches within this smaller space.

10.3 Filter methods

Filter methods are commonly used in very large dimensional tasks (e.g. n > 2000)
for the following reasons: they easily scale to very high-dimensional datasets, they
are quick because computationally simple, and they are independent of the classi-
fication algorithm. Also, since feature selection needs to be performed only once,
they can be integrated into validation pipelines comparing several classifiers.

However, they are not perfect. Filter methods, by definition, ignore any interac-
tion with the classifier and are often univariate or low-variate. The relevance of each
feature is assessed separately, thereby ignoring feature dependencies. This may be
detrimental in case of complex multivariate dependencies.

10.3.1 Principal component analysis

Principal component analysis (PCA) is one of the oldest and most popular pre-
processing methods to perform dimensionality reduction. It returns a set of linear
combinations of the original features so as to retain most of their variance and their
information. Those combinations may be used as compressed (or latent) versions
of the original features and used to perform learning in a lower dimensional space.

The method consists of projecting the data from the original orthogonal space
X into a lower-dimensional space Z, in an unsupervised manner, maximising the
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Figure 10.8: Two first principal components for a n = 2 dimensional Gaussian
distribution.

variance and minimising the loss due to the projection. The new space is orthog-
onal (as the original) and its axes, called principal components, are specific linear
combinations of the original ones.

The first principal component (i.e. the axis z1 in Figure 10.8) is the axis
along which the projected data have the greatest variation. Its direction a∗ =
[a∗1, . . . , a

∗
n] ∈ Rn is obtained by maximising the variance of

z = a1x·1 + · · ·+ anx·n = aTx

a linear combination of the original features. It can be shown that a∗ is also the
eigenvector of the covariance matrix Var [x] associated to the largest eigenvalue [52].

The procedure for finding the other principal components is based on the same
principle of variance maximisation. The second principal component (i.e. the axis
z2 in Figure 10.8) is the axis, orthogonal to the first, along which the projected data
have the largest variation, and so forth.

10.3.1.1 PCA: the algorithm

Consider the training input matrix X having size [N,n]. The PCA consists of the
following steps:

1. the matrix X is normalised and transformed to a matrix X̃ such that each
column X̃[, j], j = 1, . . . , n, has null mean and unit variance1,

2. the Singular Value Decomposition (SVD) [78] (Appendix B.5.10) of X̃ is com-
puted

X̃ = UDV T

where U is a [N,N ] matrix with orthonormal columns, D is a [N,n] rectan-
gular diagonal matrix with diagonal singular values d1 ≥ d2 ≥ · · · ≥ dn ≥ 0,

1A R dataframe may be easily normalised by using the R command scale.
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dj =
√
λj with λj eigenvalue of XTX and V is a [n, n] matrix whose or-

thonormal columns are the eigenvectors of XTX,

3. the matrix X̃ is replaced by the linear transformation

Z = X̃V = UD (10.3.1)

whose columns (also called eigen-features) are a linear combination of the
original features and the related variances are sorted in a decreasing order,

4. a truncated version of Z made of the first h < n columns (associated to the h
largest singular values) is returned.

But how do we select the convenient number h of eigen-features? In the litera-
ture, three main strategies are considered:

1. fix a threshold α on the proportion of variance to be explained by the principal
components, e.g. choose h such that

λ1 + · · ·+ λh∑n
j=1 λj

≥ α

where λj is the jth largest eigenvalue and
∑h
j=1 λj is the amount of variance

retained by the first h components,

2. plot the decreasing values of λj as a function of j (scree plot) and choose the
value of h corresponding to a knee in the curve,

3. select the value of h as if it was a hyperparameter, e.g. by cross-validation.

The outcome of PCA is a rotated, compressed and lower dimension version of
the original input set {x1, . . . ,xn} made of h < n orthogonal features {z1, . . . , zh},
sorted by decreasing variance. In that sense, PCA can be considered as a linear auto-
encoder where the encoding step is performed by (10.3.1) and the reconstruction
of the coded data to the original space is obtained by X̃ = ZV T . It can also
be shown [52] that the PCA implements an optimal linear auto-encoder since it
minimises the average reconstruction error

N∑
i=1

‖xi − V TV xi‖2 (10.3.2)

which amounts, for h components, to
∑n
j=h+1 λj/N .

PCA works in a completely unsupervised manner since the entire algorithm is
independent of the target y. Though such unsupervised nature reduces the risk
of overfitting, in some cases, it may cause a deterioration of the generalisation
accuracy since there is no reason that principal components be associated with y.
For instance, in the classification example of Figure 10.9, the choice of the first PCA
component would reduce the accuracy of the classifier instead of increasing it. In
order to account both for input variation and correlation with the target, supervised
versions of PCA exist, like principal component regression or partial least squares.

Another limitation of PCA is that it does not return a subset but a weighted
average of the original features (eigen-feature). In some cases, e.g. in bioinformatics
gene selection, PCA is then not recommended since it may hinder the interpretabil-
ity of the resulting model.
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Figure 10.9: A separable n = 2 dimensional binary classification task reduced to a
non separable one because of PCA dimensionality reduction.

R script

The scripts FeatureSel/pca.R and FeatureSel/pca3D.R illustrate the PCA de-
composition in the n = 2 and n = 3 case for Gaussian distributed data and compute
the reconstruction error (10.3.2).

The script FeatureSel/pca uns.R illustrates the limits of PCA due to its unsu-
pervised nature. Consider a binary classification task with n = 2 and a separating
boundary between the two classes which is directed as the first component. In
this case a dimensional reduction is rather detrimental to the final accuracy since
it transforms the separable n = 2 problem into a non separable n = 1 problem
(Figure 10.9).

•

PCA is an example of linear dimensionality reduction. In the machine learning
literature, however, there are several examples of nonlinear versions of PCA: among
the most important we mention the kernel-based version of PCA (KPCA) and
(deep) neural auto-encoders (Section 8.1.2).

10.3.2 Clustering

Clustering, also known as unsupervised learning, is presented in Appendix A. Here
we will discuss how it plays a role in dimensionality reduction by determining groups
of features or observations with similar patterns (e.g. patterns of gene expressions
in microarray data).

The use of a clustering method for feature selection requires the definition of a
distance function between variables and the definition of a distance between clusters.
The two most common methods are

• Nearest-neighbour clustering: the number of clusters is set by the user,
then each variable is assigned to a cluster at the end of an iterative procedure.
Examples are Self Organizing Maps (SOM) and K-means.
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Figure 10.10: Dendrogram.

• Agglomerative clustering: it is a bottom-up method where clusters are ini-
tially empty and sequentially filled with variables. An example is hierarchical
clustering (R command hclust) which starts by considering all the variables
as belonging to separate clusters. Next, it joins pairs of similar features in the
same cluster and then it proceeds hierarchically by merging the closest pairs
of clusters. The algorithm requires a measure of dissimilarity between sets of
features and a linkage criterion that quantifies the set dissimilarity as a func-
tion of the set elements pairwise distances. The visual output of hierarchical
clustering is a dendrogram, a tree diagram used to illustrate the arrangement
of the clusters. Figure 10.10 illustrates the dendrogram returned by a clus-
tering of features in a bioinformatics task. Note that the dendrogram returns
different clusters of features (and a different number of clusters) at different
heights. The choice of the optimal height cut is typically done by means of a
cross-validation strategy [114].

Clustering and PCA are both unsupervised dimensionality reduction techniques,
which are commonly used in several domains (notably bioinformatics). However, the
main advantage of clustering resides in the higher interpretability of the outcome.
Unlike the PCA linear weighting, the grouping of the original features is much more
informative and may return useful insights to the domain expert (e.g. about the
interaction of a group of genes in a pathology [83]).

10.3.3 Ranking methods

Unlike PCA and clustering, ranking methods are supervised filters since they take
into account the relation between inputs and target y to proceed with the selection.
Ranking methods consist of three steps: i) they first assess the importance (or
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relevance) of each variable for the output by using a univariate measure, ii) they
rank them in decreasing order of relevance and iii) select the top k variables.

Relevance measures commonly used in assessing a feature are:

• the Pearson linear correlation (the larger, the more relevant);

• in case of binary classification tasks, the p-value of hypothesis tests like t-test
or Wilcoxon (the lower, the more relevant).

• mutual information (Section 2.16) (the larger the more relevant).

Ranking methods are fast (complexity O(n)), and their output is intuitive and
easy to understand. At the same time, they disregard redundancies and higher-
order interactions between variables. Two typical situations where ranking does
not perform well are complementary and highly redundant configurations. In the
complementary case, two input features are very low informative about the target,
yet they are very informative if taken together (see the XOR configuration later).
Because of their low univariate relevance, ranking methods will rank them low and
consequently discard them. Otherwise, two variables could be both highly relevant
about the target but very similar (or identical). In this redundant case, both will
be ranked very high and selected, despite their evident redundancy.

Feature selection in a gene expression dataset

A well-known high-dimensional classification task is gene expression classification
in bioinformatics, where the variables correspond to genomic features (e.g. gene
probes), the observations to patients and the targets are biological phenotypes (e.g.
cancer grade). Because of the growing capabilities of sequencing technology, the
number of genomic features is typically much larger than patient cohorts’ size. In
the script FeatureSel/featsel.R we analyze the microarray dataset from [79].
This dataset contains the genome expressions of n = 7129 genes for N = 72 pa-
tients, and V = 11 related phenotype variables. The expression matrix X and the
phenotype vector Y are contained in the dataset data(golub). The script studies
the dependency between the gene expressions and the binary phenotype ALL.AML
indicating the leukaemia type: lymphoblastic leukaemia (ALL) or acute myeloid
leukaemia (AML). Relevant features are selected by correlation ranking and the
misclassification errors are computed for different sizes of the feature set.

•

10.4 Wrapping methods

Wrapper methods combine a search in the space of possible feature subsets with
an assessment phase relying on a learner and a validation (often cross-validation)
technique. Unlike filter methods, wrappers take into consideration the interaction
between features, and this in a supervised manner. Unfortunately, this implies a
much higher computational cost, especially in the case of expensive training phases.
Also, the dependance of the final result on the learner choice could be considered as
a nuisance factor confounding the impact of the feature set on the final accuracy2.
In other terms, the issue is: was the feature set returned by the wrapper because it
was good in general or only for that specific learner (e.g. a neural network)?

The wrapper search can be seen as a search in a space W = {0, 1}n where a
generic vector w ∈W is such that

w[j] =

{
0 if the input j does NOT belong to the set of features

1 if the input j belongs to the set of features

2This is the reason why a blocking factor approach to control the variability due to the learner
algorithm and improve the robustness of the solution has been proposed in [28].



10.4. WRAPPING METHODS 305

Wrappers look for the optimal vector w∗ ∈ {0, 1}n such that

w∗ = arg min
w∈W

M̂ISEw (10.4.3)

where M̂ISEw is the estimation of the generalisation error of the model based on
the set of variables encoded by w. Since in real-settings the actual generalisation

error is not directly observable, the computation of M̂ISEw requires the definition
of a learner and of a validation strategy.

Note that the number of vectors in W is equal to 2n, that it doubles for each
new feature and that for moderately large n (e.g. n > 20), the exhaustive search
is no more affordable. For this reason, wrappers typically rely on heuristic search
strategies.

10.4.1 Wrapping search strategies

Three greedy strategies are commonly used to avoid the exponential complexity
O(2n) of the exhaustive approach:

• Forward selection: the procedure starts with no variables and progressively
incorporates features. The first selected input is the one that returns the
lowest generalisation error. The second input selected is the one that, together
with the first, has the lowest error, and so on, until no further improvement is
made or the required number of features is attained. An example of forward
selection is implemented in the R script FeatureSel/fs wrap.R.

• Backward selection: it works in the opposite direction of the forward ap-
proach by progressively removing features from the original feature set. The
procedure starts by learning a model using all the n variables and, therefore,
requires at least N > n. Then the impact of dropping one feature at a time
from the current subset is assessed. The feature which is actually removed
is the one that yields the lowest generalisation error after deletion. In other
terms, it is the one whose absence causes the lowest increase (or highest de-
crease) of the generalisation error. The procedure iterates until the desired
number of features is attained.

• Stepwise selection: it combines the previous two techniques by testing for
each set of variables, first the removal of features belonging to the set, then
the addition of variables not in the set.

It can be shown that the forward and the backward strategies have a O(n2) time
complexity in the case of n steps: since the ith step (i = 0, . . . , n − 1) requires
n − i assessments to select (or remove) the (i + 1)th feature, the computational

complexity for n steps amounts to
∑n−1
i=0 (n− i) = n(n+1)

2 .
Nevertheless, since such complexity cannot be affordable either in case of very

large n, it is common usage to reduce first the number of features by using a fast
filter method (e.g. ranking) and then apply a wrapper strategy on the remaining
number of features. Another trick consists of limiting the maximum size of the
feature set, then reducing the computational cost.

10.4.2 The Cover and van Campenhout theorem

The rationale of forward and backward greedy heuristics is that an optimal set of
size k should contain the optimal set of size k − 1. Though this seems intuitive, in
the general case there is no reason why this relation should hold. A formal result
in that sense is provided by the Cover and van Campenhout theorem [54], which
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contains a negative result about the aim of wrapper search techniques to find the
optimal subset by local procedures.

Let us consider a learning problem and denote by R∗(w) the lowest functional
risk (5.2.6) for the subset of variables w. Cover and van Campenhout proved that
the only generally valid (i.e. which holds for all data distributions) monotonic
relation linking feature size and generalisation is :

w2 ⊂ w1 ⇒ R∗(w1) ≤ R∗(w2) (10.4.4)

i.e. by adding variables we reduce the minimal risk3.

Given n features, any ordering of the 2n subsets which is consistent with the
above constraint is indeed possible. This means for any possible ordering, there
exists a distribution of the data that is compatible with that. If the three variables
optimal set is

{x·1,x·3, ,x·13}

there is no guarantee that the best set of four variables is a superset of w1 (as it is
assumed in forward selection). According to this theorem, there exists a distribution
for which the best set of 4 features could well be

{x·2,x·6,x·16,x·23}

since this is not in contradiction with the constraint (10.4.4). In other words, the
Cover and van Campenhout theorem states that there are data distributions for
which forward/backward strategies could be arbitrarily bad.

10.5 Embedded methods

They are typically less computationally intensive than wrapper methods but are
specific to a learning machine. Well-known examples are classification trees, Ran-
dom Forests (Section 9.4), Naive Bayes (Section 8.2.3.1), shrinkage methods and
kernels.

10.5.1 Shrinkage methods

Shrinkage is a technique to improve a least-squares estimator by regularisation
and consists of reducing the model variance by adding constraints on the value
of coefficients. In what follows, we present two shrinkage approaches that penalise
the least-squares solutions having a large number of coefficients with values different
from zero. The rationale is that only those variables, whose impact on the empirical
risk is considerable, deserve a coefficient different from zero and should appear in
the fitted model. Shrinkage is an implicit (and more continuous) embedded manner
of doing feature selection since only a subset of variables contributes to the final
predictor.

3Note that this relation refers to the optimal model that could be learned with the input subset
w and that the notion of lowest functional risk does not take into consideration the model family
nor the finite-size setting. In other terms, this inequality refers only to the bias and not the
variance component of the generalisation error. So in practice though in theory R∗(w1) ≤ R∗(w2)
it could happen that GN (w1) ≥ GN (w2) where GN is the generalisation error of the model learned
with N observations



10.5. EMBEDDED METHODS 307

10.5.1.1 Ridge regression

Ridge regression is an example of shrinkage method applied to least squares regres-
sion

β̂r = arg min
b
{
N∑
i=1

(yi − xTi b)2 + λ

p∑
j=1

b2j} =

= arg min
b

(
(Y −Xb)T (Y −Xb) + λbT b

)
where λ > 0 is a complexity parameter that controls the amount of shrinkage:

the larger the value of λ, the greater the amount of shrinkage. Note that if λ = 0
the approach boils down to a conventional unconstrained least-squares.

An equivalent formulation of the ridge problem is

β̂r = arg min
b

N∑
i=1

(yi − xTi b)2,

subject to

p∑
j=1

b2j ≤ L

where there is a one-to-one correspondence between the parameter λ and L [89].
It can be shown that the ridge regression solution is

β̂r = (XTX + λIp)
−1XTY (10.5.5)

where Ip is the [p, p] identity matrix (p = n + 1) and it is typically recommended
that the X columns are normalised (zero mean and unit variance) [119]. In algebraic
terms, a positive λ ensures that the matrix to be inverted be symmetric and strictly
positive definite.

If n >> N it is recommended to take advantage of the SVD decomposition (B.5.11)
to avoid the inversion of a too large matrix [91]. If we set X = UDV T then we
obtain from (10.5.5) and (B.8.14)

β̂r = (V DUTUDV T + λIp)
−1V DUTY = V (RTR+ λIN )−1RTY

where R = UD is a [N,N ] matrix and IN is the [N,N ] identity matrix.
In general, ridge regression is beneficial in numerical, statistical and inter-

pretability terms. From a numerical perspective, it is able to deal with rank deficient
matrices X and reduces the ill-conditioning of the matrix XTX. From a statistical
perspective, it reduces the variance of the least-squares solution β̂r (Section (7.1.14))
at the cost of a slight bias increase. Given the predominance of the variance term
in high-dimensional tasks, ridge regression enables a reduction of the generalisation
error. Last but not least, pushing the absolute value of many coefficients to zero, it
allows the identification of a small (then interpretable) number of input features.

10.5.1.2 Lasso

Another well-known shrinkage method is lasso which estimates the linear parame-
ters by

β̂r = arg min
b

N∑
i=1

(yi − xTi b)2, (10.5.6)

subject to

p∑
j=1

|bj | ≤ L (10.5.7)
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If on one hand the 1-norm penalty of the lasso approach allows a stronger constraint
on the coefficients, on the other hand it makes the solution nonlinear and demands
the adoption of a quadratic programming algorithm (details in Appendix C.3).

To formulate the problem (10.5.6) in the form (C.3.4) with linear constraints,
we may write the bj terms as the sum of two non-negative numbers

bj = b+j − b
−
j =

|bj |+ bj
2

− |bj | − bj
2

The function to optimize becomes

J(b) = bTXTXb− 2Y TXb = (b+ − b−)TXTX(b+ − b−)− 2Y TX(b+ − b−) =[
b+ b−

] [ XTX −XTX
−XTX XTX

] [
b+

b−

]
+
[
−2Y TX 2Y TX

] [b+
b−

]
(10.5.8)

with the constraints 
1 1 . . . 1
−1 0 . . . 0
0 −1 . . . 0
0 0 . . . −1

[b+b−
]
≤


L
0
· · ·
0


where the left-hand matrix is [2p+ 1, 2p]. The first line of the inequality is (10.5.7)
since

∑p
j=1(b+j + b−j ) =

∑p
j=1 |bj | ≤ L.

Note that if L >
∑p
j=1 |β̂j | the lasso returns the common least-squares solution.

The penalty factor L is typically set by having recourse to cross-validation strategies.
Though the difference between ridge regression and lasso might seem negligible,

the use of a 1-norm penalty instead of a 2-norm has a sensible impact on the number
of final coefficients which are set to zero. Figure 10.11 visualises this in a bivariate
case: β̂ denotes the least-squares solution which would be returned by both methods
if λ = 0. Since λ > 0, the minimisation combines the empirical risk function (whose

contour lines are the ellipsoids around β̂) and the regularisation term (whose contour
lines are around the origin). Note that the only difference between the two figures
is the shape of the regularisation contour lines (related to the used norm). The
minimisation solution is a bivariate vector which lies somewhat (depending on the
λ value) at the intersection of an empirical risk contour line and a regularisation
one. The figure shows that this intersection in the lasso case tends to be closer
to the axis β1 = 0, this meaning that the first estimated coefficient is set to zero.
Because of the circular shape of regularisation contours, this is much less probable
in the ridge regression case.

R script

The R script FeatureSel/lasso.R implements the quadratic programming min-
imisation in (10.5.8) by using the R library quadprog. The script applies the lasso
strategy to a regression task where the number of features n is comparable to the
number of observations N and only a small number of features is relevant. The
results show the impact of the constraint L on the empirical risk and the evolution
of the lasso solution moving towards one of the axis. In particular the smaller L,
the less importance is given to minimise J , the larger the empirical risk and the
smaller is the number of estimated parameters different from zero.

•

The shrinkage approach has been very successful in recent years and several
variants of the methods mentioned above exist in literature: some adopt different
penalty norms, some combine different norms (e.g. Elastic-net) and some combine
shrinkage with greedy search (e.g. Least Angle Regression).
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Figure 10.11: Ridge regression vs lasso [89].

10.5.2 Kernel methods

Many learning algorithms, such the perceptron, support vector machine (SVM) and
PCA, process data in a linear manner through inner products (Section B.2). Those
techniques are exposed to two main limitations: the linear nature of the model and
the curse of dimensionality for large n.

Kernel methods [149] adapt those techniques by relying on the combination of
two smart ideas: i) address large dimension n problems by solving a dual problem
in a space of dimension N ii) generalise the notion of inner product by adopting a
user-specified kernel function, i.e., a similarity function over pairs of data points.

Kernel functions operate in a high-dimensional, implicit feature space without
computing the coordinates of the data in that space. This allows to take advantage
of high nonlinear dimensional representations without actually having to work in
the high dimensional space.

10.5.3 Dual ridge regression

We introduced the dual formulation of the linear least-squares problem in Sec-
tion 7.1.18. Consider now a ridge regression problem (Section 10.5.1.1) with pa-
rameter λ ∈ <+. The conventional least-squares solution is the [n, 1] parameter
vector

β̂ = (X ′X + λIn)−1X ′y

where In is the identity matrix of size n. Since from (B.8.14)

(X ′X + λIn)−1X ′ = X ′(XX ′ + λIN )−1

where IN is the identity matrix of size N , the dual formulation is

β̂ = X ′(XX ′ + λIN )−1y = X ′α
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Figure 10.12: Implicit transformation of the problem to a high-dimensional space.

where
α = (K + λIN )−1y

is the [N, 1] vector of dual variables and K = XX ′ is the Kernel or Gram [N,N ]
matrix. Note that all the information required to compute α is this matrix of inner
products.

The prediction for a test [Nts, n] dataset Xts is

ŷts = Xtsβ̂ = XtsX
′α = Kts(K + λIN )−1y

where Kts is a [Nts, N ] matrix with kj,i = 〈xj , xi〉, j = 1, . . . , Nts, , i = 1, . . . , N .
This derivation allows transforming a n dimensional linear task into a N dimen-

sional one. This is of course very relevant if n >> N . However, the model remains
linear. What about non-linear models?

10.5.4 Kernel function

A nonlinear input transformation can transform a non linearly separable classifica-
tion task into an higher dimension yet easier linear classification task (Figure 10.12).

R script

The script FeatureSel/featrans.R shows an example of nonlinear classification
task (bidimensional input space n = 2) (Figure 10.13 left) and the correspond-
ing linear separable task (Figure 10.13 right) obtained with the creation of a new
variable x3 = x2

1 + x2
2.

•

Suppose to apply the nonlinear transformation Φ : x ∈ <n → Φ(x) ∈ RM to the
inputs of the ridge regression problem discussed above. The prediction for an input
x would now be

ŷ = y′(K + λIN )−1k

where
Ki,j = 〈Φ(xi),Φ(xj)〉, ki = 〈Φ(xi),Φ(x)〉

The rational of kernel methods is that those inner products can be computed
efficiently without explicitly computing the mapping Φ thanks to a kernel func-
tion [149]. A kernel function is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈Φ(x),Φ(z)〉
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Figure 10.13: Transformation of the nonlinear classification task (left) to a linearly
separable task (right).

where Φ is a mapping from X to a feature space F . For instance

κ(x, z) = 〈x, z〉2 = 〈Φ(x),Φ(z)〉

where

Φ : x = (x1, x2)→ Φ(x) = (x2
1, x

2
2,
√

2x1x2) ∈ F

Kernels de-couple the specification of the algorithm from the specification of the
feature space since they provide a way to compute dot products in some feature
space without even knowing what this space the function Φ are.

For instance

κ(x, z) = (1 + xT z)2

corresponds to a transformation to M = 6 dimensional space

Φ(x1, x2) = (1, x2
1, x

2
2,
√

2x1,
√

2x2,
√

2x1x2)

A Gaussian kernel κ(x, z) = exp−γ‖x−z‖
2

corresponds to a transformation to an
infinite-dimensional space.

Theoretically, a Gram matrix must be positive semi-definite (PSD). Empirically,
for machine learning heuristics, choices of a function κ that do not satisfy PSD
condition may still perform reasonably if κ at least approximates the intuitive idea
of similarity.

The general idea of transposing a low-dimensional method to a nonlinear high-
dimensional setting by using a dual formulation is generally referred to as kernel
trick : given any algorithm that can be expressed solely in terms of dot products,
the kernel trick allows us to construct different nonlinear versions of it.

Kernel methods are together with deep learning and random forests among the
most successful methods in the history of machine learning. We decided to present
them in this section for their powerful strategy in dealing with settings with high
dimension and low number of observations. Their strength can however turn into
a weakness if we aim to scale the approach to very large N . At the same time, as
for all the other methods presented in this book, their generalisation accuracy is
strictly dependent on the adequate choice of the related hyperparameters. In the
case of kernel methods the most important hyperparameters are the regularisation
term λ, the analytical form of the kernel function and the related parameters.
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10.6 Similarity matrix and non numeric data

In the previous sections, we have considered feature selection techniques for conven-
tional supervised tasks where data are numeric and represented in a conventional
tabular form DN . What about non-conventional tasks where the training set is not
a data table but a set of items? Examples of items could be music tracks, texts,
images, web sites or graphs. Often, in those cases, we are not able (or confident)
in encoding each item as a numeric vector of size n. Nevertheless, we could be con-
fident in defining a similarity score between pairs of items. For instance, we may
use musical genre to measure the similarity between tracks or user access statistics
to obtain the similarity between web sites.

As a result, we may encode the item set as a similarity matrix S of size [N,N ]
which becomes an alternative way of representing the dataset.

A symmetric factorisation of a symmetric [N,N ] matrix

S ≈ FFT (10.6.9)

is an approximation of the similarity matrix where F is a [N,K] matrix. The
matrix F may be used as an approximate K dimensional numeric representation of
the non-numeric item-set.

Note that the positive definitiveness of S is a necessary and sufficient condition
for having an exact factorisation, i.e. an identity in (10.6.9). This is guaranteed
in the numeric case where S is the covariance matrix and the pairwise similarity is
computed by dot product. In the generic non-numeric case, techniques to repair the
positive definitiveness of S may be adopted. An alternative is the use of optimisation
techniques to obtain F as the solution of the minimisation task

F = arg min
U
‖S − UUT ‖2F

Another limitation of the factorisation approach is that it is hardly scalable for
very large N . For such cases sampling based solution have been proposed in [2].

10.7 Averaging and feature selection

The role of averaging methods in supervised learning has been discussed in the
previous chapter. Averaging may play a crucial role also in dealing with large
dimensionality. Instead of choosing one particular feature selection method, and
accepting its outcome as the final subset, different feature selection methods can
be combined using ensemble approaches. Since there is not an optimal feature
selection technique and due to the possible existence of more than one subset of
features that fits the data equally well, model combination approaches have been
adapted to improve the robustness and stability of final, discriminative methods.

Ensemble techniques typically rely on averaging the outcome of multiple models
learned with different feature subsets. A well-known technique is the random sub-
space method [93], also known as feature bagging, which combines a set of learners
trained on random subsets of features.

10.8 Feature selection from an information-theoretic
perspective

So far, we focused on algorithmic methods to return a subset of relevant features,
without making any formal definition of relevance. In this section, we formalise the
notion of feature relevance by using concepts of information theory, like entropy,
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mutual information and conditional information from Sections 2.16 and 2.16.1. The
most important message is that the relevance of a feature is not an absolute but a
context dependent concept.

10.8.1 Relevance, redundancy and interaction

This section defines in information-theoretic terms what is a relevant variable in a
supervised learning task where X is a set of n input variables and y is the target.
These definitions are obtained by interpreting in information-theoretic terms the
definitions made by [106].

Definition 8.1 (Strong relevance). A variable xi ∈ X is strongly relevant to the
target y if

I(X−i; y) < I(X; y)

where X−i is the set obtained by removing the variable xi from X.

In other words, a variable is strongly relevant if it carries some information about
y that no other variable can carry. Strong relevance indicates that the feature is
always necessary for an optimal subset.

Definition 8.2 (Weak relevance). A variable is weakly relevant to the target y if
it is not strongly relevant and

∃S ⊆ X−i : I(S; y) < I({xi,S}; y)

In other words, a variable is weakly relevant when it exists a certain context S
in which it carries information about the target. Weak relevance suggests that the
feature is not always necessary but may become necessary at certain conditions.
This definition makes clear that for some variables (typically the majority) the
relevance is not absolute but more a context-based notion. In a large variate setting,
those features are the hardest to deal with since their importance depends on the
other selected ones.

Definition 8.3 (Irrelevance). A variable is irrelevant if it is neither strongly or
weakly relevant.

Irrelevance indicates that the feature is not necessary at all. This is definitely
the easiest case in feature selection. Irrelevant variables should be simply discarded.

Example

Consider a learning problem where n = 4, x2 = −x3 + w2

y =

{
1 + w, x1 + x2 > 0

0, else

where w and w2 are noise terms. Which variables are strongly, weakly relevant and
irrelevant?

•

Definition 8.4 (Markov blanket). Let us consider a set X of n r.v.s., a target
variable y and a subset My ⊂ X. The subset My is said to be a Markov blanket of
y, y /∈My iff

I(y; X−(My)|My) = 0
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It can be shown [159, 132] that, under specific assumptions about the distribu-
tion, the Markov blanket of a target y is composed of the set of all the strongly
relevant variables in X.

Another useful notion to reason about the information of a subset of variables
is the notion of interaction.

Definition 8.5 (Interaction). Given three r.v.s. x1, x2 and y we define the inter-
action between these three variables as

I(x1; y)− I(x1; y|x2)

The interaction term satisfies the following relation:

I(x1; y)− I(x1; y|x2) = I(x1; x2)− I(x1; x2|y) = I(x2; y)− I(x2; y|x1)

In what follows, we show that it is possible to decompose the joint information
of two variables in the sum of the two univariate terms and the interaction. From
the chain rule (2.16.86)

I(x2; y|x1) + I(x1; y) = I(x1; y|x2) + I(x2; y)

we have
I(x2; y|x1) = I(x2; y)− I(x1; y) + I(x1; y|x2)

By summing I(x1; y) to both sides, from (2.16.86) it follows that the joint informa-
tion of two variables about a target y can be decomposed as follows:

I({x1,x2}; y) = I(x1; y) + I(x2; y)− [I(x1; y)− I(x1; y|x2)]︸ ︷︷ ︸
interaction

=

= I(x1; y) + I(x2; y)− [I(x1; x2)− I(x1; x2|y)]︸ ︷︷ ︸
interaction

(10.8.10)

What emerges is that the joint information of two variables is not necessarily equal,
greater or smaller than the sum of the two individual information terms. All de-
pends on the interaction term: if the interaction term is negative, the two variables
are complementary, or in other terms, they jointly bring a higher information than
the sum of the univariate terms. This is typically the case of the XOR exam-
ple illustrated in Figure 10.14 [81]. In this case I(x1; y) = 0, I(x2; y) = 0 but
I({x1,x2}; y) > 0 and maximal. When they are redundant, the resulting joint
information is lower than the sum I(x1; y) + I(x2; y).

Since (10.8.10) holds also when x1 and/or x2 are sets of variables, this result
sheds an interesting light about the non-monotonic nature of feature selection [173].

10.8.2 Information-theoretic filters

In terms of mutual information the feature selection problem can be formulated as
follows. Given an output target y and a set of input variables X = {x1, . . . ,xn},
the optimal subset of d variables is the solution of the optimisation problem

X∗ = arg max
XS⊂X,|XS |=d

I(XS ; y) (10.8.11)

Thanks to the chain rule (2.16.86), this maximisation task can be tackled by
adopting an incremental approach (e.g. forward approach).

Let X = {xi}, i = 1, . . . , n the whole set of variables and XS the set of s variables
selected after s steps. The choice of the (s+ 1)th variable x(s+1) ∈ X−XS can be
done by solving

x(s+1) = arg max
xk∈X−XS

I({XS ,xk}; y) (10.8.12)
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Figure 10.14: XOR classification separable task with two inputs and one binary class
taking two values (stars and rounds). Two variables x1 and x2 are complementary:
they bring alone no information but they bring the maximal information about y
when considered together.

This is known as the maximal dependency problem and requires at each step multi-
variate estimation of the mutual information term I({XS ,xk}; y). Such estimation
is often inaccurate in large variate settings (i.e. large n and large s) because of
ill-conditioning and high variance issues.

In literature several filter approaches have been proposed to solve the optimi-
sation (10.8.12) by approximating the multivariate term I({XS ,xk}; y) with low
variate approximations. These approximations are necessarily biased, yet much less
prone to variance than their multivariate counterparts.

We mention here two of the most used information theoretic filters:

• CMIM [70]: since according to the first (chain-rule) formulation

arg max
xk∈X−XS

I({XS ,xk}; y) = arg max
xk∈X−XS

I(xk; y|XS)

this filter adopts the low-variate approximation

I(xk; y|XS) ≈ min
xj∈XS

I(xk; y|xj)

• mRMR (minimum Redundancy Maximal Relevance) [133]: the mRMR method
approximates at the (s+ 1)th step I({XS ,xk}; y) with

I(xk; y)− 1

s

∑
xi∈XS

I(xi; xk)

where s is the number of features in XS . The method implements a forward
selection which selects at the (s+ 1)th step

x(s+1) = arg max
xk∈X−XS

[
I(xk; y)− 1

s

∑
xi∈XS

I(xi; xk)

]

that is a variable which has both high relevance I(xk; y) and low average
redundancy with the set XS .
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10.8.3 Information-theoretic notions and generalisation

Most of this book has dealt with generalisation error to assess, compare and select
prediction models and in this chapter, we presented feature selection as an instance
of model selection. Nonetheless, this last part of the chapter has been mainly
referring to information-theoretic notions for performing feature selection. It is
then important to provide some elucidation on how information-theoretic notions
relate to generalisation error.

Given a set X of input features and a target feature y, the quantity I(X; y) is
not directly observable and has to be estimated before use. Since

I(X; y) = H(y)−H(y|X),

maximising I(X; y) in (10.8.11) is equivalent to minimise H(y|X). The term
H(y|X) is the entropy (or uncertainty) of y once the value of the input set X
is given. In the Normal case, this term is proportional to the conditional variance
(Equation (2.13.63)). It follows that finding the set of inputs X which minimises
H(y|X) boils down to find the set of features that attains the lowest generalisation
error (5.2.6).

In real-world settings, since the conditional entropy H(y|X) is not observable,
it may be approximated by the generalisation error, e.g. by MISE in the regres-
sion case. Hopefully, the link between feature selection, generalisation error and
information-theory becomes clear: finding the set that maximises the mutual in-
formation in (10.8.11) boils down to find the set that minimises the estimated
generalisation error (10.4.3).

10.9 Assessment of feature selection

Most of the discussed techniques aim to find the best subset of features by per-
forming a large number of comparisons and selections. This additional search layer
increases inevitably the space of possible models and the variance of the resulting
one. Despite the use of validation procedures, low misclassification or low predic-
tion errors may be found only due to chance. As stated in [119], given a sufficiently
exhaustive search, some apparent pattern can always be found, even if all predictors
have come from a random number generator. This is due to the fact that, as a
consequence of the search process, the set of features is dependent on the data used
to train the model, introducing then what is called selection bias [119].

A bad (and dangerous) practice is using the same set of observations to select
the feature set and assess the accuracy of the classifier. Even if cross-validation
is used to assess the accuracy of the classifier, this will return an overoptimistic
assessment of the generalisation error (Figure 10.15). Cross-validation has to be
used to assess the entire learning process which is composed of both a feature
selection and a classification step. This means that for each fold, both feature
selection and classification has to be performed before testing on the observations
set aside. Keeping feature selection out of cross-validation will return an assessment
which will be as much biased as the number of observations is small.

If cross-validation cannot be carried out (e.g. because of too small training size),
then the use of external validation sets is strongly recommended.

If no additional data are available, an alternative consists of comparing the gen-
eralisation accuracy returned by cross-validation on the original data with the one
obtained by re-running the learning procedure with randomised datasets. This is
inspired by the method of permutation testing described in Section 4.6. The proce-
dure consists of repeating the feature selection and the cross-validation assessment
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Figure 10.15: Selection bias associated to feature selection: the internal leave-one-
out is an overoptimistic estimator of the test generalisation error.

several times by using a randomised dataset instead of the original one. For in-
stance, a randomised dataset may be obtained by reshuffling the output vector, a
permuting operation that artificially removes the dependency between the inputs
and the output. After a number of repetitions with randomised datasets, we obtain
the null distribution of the accuracy in case of no dependency between inputs and
output. If the accuracy associated with the original data is not significantly better
than the one obtained with randomised data, we are overfitting the data. For in-
stance, let us consider a large-variate classification task where the cross-validated
misclassification error after feature selection is 5%. If we repeat the same learning
procedure 100 times with randomised datasets and we obtain a significant (e.g. 10)
number of times a misclassification error smaller or equal than 5%, this is a sign of
potential overfitting.

Making a robust assessment of a feature selection outcome has a striking im-
portance today because we are more and more confronted with tasks characterised
by a very large feature to sample ratio (e.g. in bioinformatics [8]), where a bad
assessment procedure can give too optimistic (overfitted) results.

Example

The script FeatureSel/fselbias.R illustrates the problem of selection bias in the
case of intensive search during feature selection. Consider a linear input/output
regression dependency with n = 54 inputs (of which only 4 relevant and others
irrelevant) and a dataset of size N = 20. Let us perform a forward search based
on internal leave-one-out. Figure 10.15 shows the evolution of the internal leave-
one-out MSE and a more reliable estimation of the generalisation MSE based on
an independent test set (5000 i.i.d. examples from the same input/output process).
It appears that, as the feature set size increases, the internal leave-one-out error
returns a very optimistic estimation of the generalisation error. Therefore, the
internal leave-one-out error is unable to detect that the optimal size of the input
set (i.e. the number of strongly relevant variables) is equal to four.

•

10.10 Conclusion

Nowadays, feature selection is an essential component of a real-world learning
pipeline. This chapter discussed how the problem is typically addressed as a stochas-
tic optimisation task in a combinatorial state-space where the assessment of each
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solution and the search strategy are key elements. Most heuristic approaches rely
on a monotonic assumption, stating that the best subset of size k is always con-
tained in the best subset of size > k. The theorem in Section 10.4.2 and the notions
of interaction discussed in Section 10.8.1 show that this assumption is simplistic.
Variables that are almost non-informative alone may become extremely informative
together since the relevance of a feature is context-based. . Our opinion is that
the best way of conceiving feature selection is not by black-box optimisation but
by reasoning on the conditional structure of the distribution underlying the data.
The final aim should be, as much as possible, to shed light on the context-based
role of each feature4. In recent years there have been many discussions about the
interpretability of data-driven models though it is not always made clear what is
the most valuable information for the human user. We deem that in a large variate
task the most useful outcome should be an interpretable description of features,
returning for each of them a context-based degree of relevance. Accuracy is only a
proxy of information: the real information is in the structure.

10.11 Exercises

1. Consider the dataset

x1 x2 x3 y

1 1 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
1 0 1 0
1 0 0 0
1 1 0 0
0 1 1 0

Rank the input features in a decreasing order of relevance by using the correlation

ρxy =
σ̂xy

σ̂xσ̂y

as measure of relevance.

Solution: Since ρx1y = 0.488, ρx2y = −0.293, ρx3y = −0.192, the ranking is
x1,x2,x3.

2. Consider a regression task with two inputs x1, x2 and output y. Suppose we observe
the following training set

X1 X2 Y

-0.2 0 .1 1
0.1 0 0.5
1 -0.3 1.2
0.1 0.2 1
-0.4 0.4 0.5
0.1 0.1 0
1 -1 1.1

1. Fit a multivariate linear model with β0 = 0 to the dataset.

4The notion of context is essential in human cognition. For instance, according to the philoso-
pher Wittgenstein (1968), the meaning of a word is defined by the circumstances of its use.
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2. Compute the mean squared training error.

3. Suppose you use a correlation-based ranking strategy for ranking the features.
What would be the top ranked variable?

Hint:

A =

[
a11 a12

a12 a22

]
⇒ A−1 =

1

a11a22 − a2
12

[
a22 −a12

−a12 a11

]
Solution:

1. XTX =

[
2.23 −1.45
−1.45 1.31

]
(XTX)−1 =

[
1.599 1.77
1.77 2.72

]
XTY =

[
2.05
−0.96

]
β = (XTX)−1XTY =

[
1.58
1.016

]

2. e = Y − Xβ =



1.21
0.34
−0.08
0.64
0.73
−0.26
0.54


It follows that the Mean Squared training error

amounts to 0.41.

3. Since

ρX1Y =

∑N
i=1(Xi1 − µ1)(Yi − µY )√∑N
i=1(Xi1 − µ1)2(Yi − µY )2

= 0.53

and

ρX2Y =

∑N
i=1(Xi2 − µ2)(Yi − µY )√∑N
i=1(Xi2 − µ2)2(Yi − µY )2

= −0.48

where µ1 = 0.24, µ2 = −0.07, µY = 0.75, X1 is the top ranked variable.

3. The .Rdata file bonus4.Rdata in the directory gbcode/exercises of the companion
R package contains a regression dataset with N = 200 observations, n = 50 input
features (in the matrix X) and one target variable (vector Y).

Knowing that there are 3 strongly relevant variables and 2 weakly relevant variables,
the student has to define and implement a strategy to find them.

No existing feature selection code has to be used. However, the student may use
libraries to implement supervised learning algorithms.

The student code should

• return the position of the 3 strongly relevant variables and 2 weakly relevant
variables,

• discuss what strategy could have been used if the number of strongly and
weakly variables was not known in advance.

Solution:

See the file Exercise4.pdf in the directory gbcode/exercises of the companion R
package (Appendix G).
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Chapter 11

Conclusions

We have come to the end, almost. We will take a few words to remind you that
machine learning is not perfect and to cover a bit of ethical considerations. Then
we will conclude with some take-home messages and final recommendations.

11.1 About ML limitations

From the dawn of the AI discipline, machine learning has been considered a key
component of autonomous intelligent agents. In recent years, though a full-fledged
artificial intelligence does not seem within reach yet, machine learning found great
success thanks to its data-driven and assumption-free nature.

This book insisted on the fact that no modelling effort may be completely
assumption-free. Assumptions (though often implicit and hard-coded in the al-
gorithms) are everywhere in the learning process, from problem formulation to data
collection, model generation and assessment! When such assumptions happen to
match with reality, the resulting method is successful: if it is not the case, the result
may be disappointing (see NFL theorem).

Another misjudgment about machine learning is to consider it as a reliable proxy
of human learning. Machine learning owes its success to the generic and effective way
of transforming a learning problem into a (stochastic) optimisation one. Machines
do not think or learn like us: if this is the key to their success, this makes them
fragile, too. A large part of human rational decision making and understanding
cannot be reduced to the optimisation of a cost function.

This has been put into evidence by a recent trend taking a critical attitude
about the machine learning approach (e.g. the i.i.d. assumption) and its limits.
For instance, research on adversarial learning shows that the limited training and
validation set may induce very optimistic expectations about the generalisation
of learners. Recent research showed that automatic learners, which appear to be
accurate emulators of human knowledge (e.g. in terms of classification accuracy),
may be easily fooled once required to work in specific situations. A well-known
example (Figure 11.1) shows that deep learning classifiers, able to reach an almost
100% accuracy rate in recognising animal images, may return pitiful predictions,
when confronted with properly tweaked inputs [63]. Though this seems anecdotal,
such vulnerabilities in learning machines could be very dangerous in safety-critical
settings (e.g. self-driving cars).

Another interesting research direction is the study of the robustness of automat-
ically learned model in settings which are not identical to the one used for training,
e.g. because of nonstationarity and concept drift. This is particularly critical in
health problems where models returning high-quality predictions for a specific co-
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Figure 11.1: Bad generalisation in front of adversarial examples

hort (e.g. in a given hospital) miserably fail when tested on different patients (e.g.
from another hospital). How to transfer learned models to close settings is then
another hot topic in recent learning research. In this context, causal interpretation
of data generation could play an important role in reducing the risk of drift and
increasing the model stability.

11.2 A bit of ethics

Last but not least, a word of ethics should not hurt in a book for computer scien-
tists. “Data-driven does not necessarily mean “objective. Machine learning models
predict what they have been trained to predict and their forecasts are only as good
as the data used for their training. In that sense, machine learning can reinforce hu-
man prejudices if trained on biased data sets derived from human decisions. Feeding
learners with biased data can have dangerous consequences [126]. In 2016 Twitter
chatbot Tay began uttering racist statements after a single interaction day. The
predictive justice software COMPAS, deciding whether a suspect should be incar-
cerated before trial or not, has been accused of being racially biased by an NGO.
In 2015, Google Photos identified two African American people as “gorillas”.

Every ML practitioner should be aware that even models developed with the
best of intentions may exhibit discriminatory biases, perpetuate inequality, or per-
form less well for historically disadvantaged groups 1. Recent efforts in modelling
and introducing fairness in machine learning (most of the time based on causal
considerations) are then more than welcome.

At the same time, the problem goes beyond the scientific and technical realm
and involves human responsibility. Automating a task is a responsible decision-
making act which implies encoding (implicitly or explicitly) ethical priorities in
an autonomous agent. This encoding step is not necessarily easy or comfortable
for humans since it implies making ethical alternatives commensurable2, e.g. by
mapping them to numerical or quantitative cost functions. For instance, a self-
driving car that decides to brake (or not to brake) is somewhat trading the cost of
human life vs. the cost of an over-conservative action. The choice of entrusting to
machines tasks that could have an impact on human security or human sensibility
should never exempt humans (from the programmer to the decision maker) from

1see also the presentation https://tinyurl.com/y4ld3ohz
2https://en.wikipedia.org/wiki/Commensurability_(ethics)

https://tinyurl.com/y4ld3ohz
https://en.wikipedia.org/wiki/Commensurability_(ethics)
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legal and moral responsibilities of probable errors.
To conclude, the ethical dilemma of ML may be summarized by the contrapo-

sition of the two citations at the beginning of this book: on the one hand, any
machine learning endeavour harbours the ambition (or the illusion) of catching the
essence of reality with numbers or quantitative tools. On the other hand, “not
everything that counts” (notably ethics) can be counted or easily translated into
numerical terms.

11.3 Take-home notions

Quoting Einstein “the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience”. This sentence catches probably
the primary take-home concept in machine learning: trade-off, notably the trade-
off between bias and variance, underfitting and overfitting, parametric and non-
parametric, false positive and false negative, type I and type II error,...(please add).

Other bulk notions the author would like you to remember (or revise) are:

• information theory: it is a powerful language to talk about stochastic depen-
dence,

• estimators: do not forget they are random variables with their own sampling
distribution, and, even if very (very) good, they may be wrong sometimes3,

• conditional probability: supervised learning is all about estimating it,

• conditional (in)dependence and its non-monotonicity: mastering the complex-
ity (and beauty) of high dimensionality goes that way.

11.4 Recommendations

We would like then to end this manuscript not by selling you a unique and superior
way of proceeding in front of data but by proposing some golden rules for anyone
who would like to adventure in the world of statistical modelling and data analysis:

• However complex is your learning algorithm (either adaptive or deep or pre-
ferred by GAFA), do not forget it is an estimator, and as such, it makes
assumptions (often implicitly). Each approach has its own assumptions! Be
aware of them before using one.

• Simpler things first! According to Wasserman [166], using fancy tools like
neural nets,...without understanding basic statistics is like doing brain surgery
before knowing how to use a band-aid.

• Reality is probably almost always nonlinear but a massive amount of (theo-
retical and algorithmic) results exists only for linear methods.

• Expert knowledge MATTERS... But data too :-)

• It is better to be confident with a number of alternative techniques (preferably
linear and nonlinear) and use them in parallel on the same task.

• Resampling and combining are at the forefront of the data analysis techniques.
Do not forget to test them when you have a data analysis problem.

3...even the divine Roberto Baggio missed a penalty in the 1994 FIFA World Cup Final against
Brazil :-(
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• Do not be religious about learning/modelling techniques. The best learning
algorithm does NOT exist.

• Statistical dependency does not imply causality, though it may shed some
light on it.

and the best motto for a machine learner:

Once you stop learning, you start dying (Albert Einstein).



Appendix A

Unsupervised learning

A.1 Probability density estimation

The probability density estimation is the problem of inferring a probability density function
pz, given a finite number of data points {z1, z2, . . . , zN} drawn from that density function.

We distinguish three alternative approaches to density estimation:

Parametric. This approach assumes a parametric model of the unknown density prob-
ability. The parameters are estimated by fitting the parametric function to the
observed dataset. This approach has been extensively discussed in Chapter 3.

Nonparametric. This approach does not assume any a priori form of the density model.
The form of the density is entirely determined by the data and the number of
parameters grows with the size of the dataset.

Semi-parametric. In this approach the number of parameter is not fixed a priori but is
independent of the size of the dataset.

A.1.1 Nonparametric density estimation

The term nonparametric is used to describe probability density functions whose functional
form is not specified in advance, but is dependent on data [143, 129].

Let us consider a random variable z with density probability pz(z) and a region R
defined on the z space. The probability that a value z drawn according to pz(z) falls
inside R is

PR = prob{z ∈ R} =

∫
R

pz(z)dz (A.1.1)

Let us define with k the random variable which represents the number of points which
falls within R, after we have drawn N points from pz(z) independently.

From (D.1.1) we have that its probability distribution is

pk(k) =
N !

k!(N − k)!
PkR(1− PR)(N−k) (A.1.2)

Moreover, the random variable k/N satisfies

E[k/n] = PR (A.1.3)

and

Var[k/N ] = E[(k/N − PR)2] =
PR(1− PR)

N
(A.1.4)

Since according to (A.1.4), the variance of k/N converges to zero as N →∞, it is reason-
able to expect that the fraction k/N return a good estimate of the probability PR

PR ∼=
k

N
(A.1.5)
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At the same time, if we assume that pz(z) is continuous and does not vary appreciably
over R, we can approximate PR with:

PR =

∫
R

p(z)dz ∼= p(z)V (A.1.6)

with V volume of R. From (A.1.5) and (A.1.6) it follows that for values of z inside R

p(z) ∼=
k

NV
(A.1.7)

In order for (A.1.5) to hold it is required to have a large R. This implies a sharply peaked
pz(z). In order for (A.1.6) to hold it is required to have a small R. This ensures a pz(z)
constant in R. These are two clashing requirements. We deduce that it is necessary to
find an optimal trade-off for R in order to guarantee a reliable estimation of pz(z). This
issue is common to all nonparametric approaches to density estimation.

In particular, we will introduce two of them

Kernel-based. This approach fixes R and searches for the optimal number of points k.

k-Nearest Neighbor (k-NN). This approach fixes the value for k and searches for the
optimal R.

The two approaches are discussed in detail in the following sections.

A.1.1.1 Kernel-based methods

Consider a random vector z of dimension [n×1] and suppose we take an hypercube region
R with sides of length B centered on the point z. The volume of R is

V = Bn

Let us now define a kernel function (or Parzen window) K(u) as

K(u) =

{
1 if |uj | < 1/2 j = 1, . . . , n
0 else

(A.1.8)

where uj is the jth component of the vector u. It follows that the quantity

K
(z − zi

B

)
is equal to unity if zi is inside the hypercube centered at z with side B.

Therefore, given a set of N points, the number of points falling inside R is given by

k =

N∑
i=1

K
(z − zi

B

)
(A.1.9)

From (A.1.7) and (A.1.9) it is possible to define the kernel-based estimate of the prob-
ability density for the kernel (A.1.8) as

p̂(z) =

∑N
i=1 K

(
z−zi
B

)
NBn

(A.1.10)

Note that the estimate (A.1.10) is discontinuous over the z-space. In order to smooth
it we may choose alternative kernel functions, as the Gaussian kernel. The kernel-based
method is a traditional approach to density estimation. However, two are the most relevant
shortcomings of this approach:

1. it returns a biased estimator [25],

2. it requires the memorisation of the whole set of observations. As a consequence the
estimation is very slow if there is an high number of data.



A.1. PROBABILITY DENSITY ESTIMATION 327

A.1.1.2 k-Nearest Neighbors methods

Consider an hyper sphere R centered at a point z, and let us grow it until it contains
a number of k points. Using Eq. (A.1.7) we can derive the k-Nearest Neighbor (k-NN)
density estimate

p̂z(z) =
k

NV
(A.1.11)

where k is the value of a fixed a priori parameter, N is the number of available observations
and V is the volume of the hyper sphere.

Like kernel-based methods, k-NN is a state-of-the-art technique in density estimation.
However it features two main shortcomings

1. the quantity (A.1.11) is not properly a probability, since its integral over the whole
Z space is not equal to one but diverges

2. as in the kernel method, it requires the storage of the whole dataset.

A.1.2 Semi-parametric density estimation

In semi-parametric techniques the size of the model does not grow with the size of the data
but with the complexity of the problem. As a consequence, the procedure for defining the
structure of the model is more complex than in the approaches previously seen.

A.1.2.1 Mixture models

The unknown density function is represented as a linear superposition of m basis functions.
The distribution is called called mixture model and has the form

pz(z) =

m∑
j=1

p(z|j)π(j) (A.1.12)

where m is a parameter of the model and typically m << N . The coefficients π(j) are
called mixing coefficients and satisfy the following constraints

m∑
j=1

π(j) = 1 0 ≤ π(j) ≤ 1 (A.1.13)

The quantity π(j) is typically interpreted as the prior probability that a data point be
generated by the jth component of the mixture. According to Bayes’ theorem, the corre-
sponding posterior probabilities is

p(j|z) =
p(z|j)π(j)

p(z)
=

p(z|j)π(j)∑m
j=1 p(z|j)π(j)

(A.1.14)

Given a data point z, the quantity p(j|z) represents the probability that the component j
had been responsible for generating z.

An important property of mixture models is that they can approximate any continuous
density with arbitrary accuracy provided the model has a sufficient number of components
and provided the parameters of the model are tuned correctly.

Let us consider a Gaussian mixture model with components p(z|j) ∼ N(µj , σ
2
j ) and

suppose that a set of N observations is available. Once fixed the number of basis functions,
the parameters to be estimated from data are the mixing coefficients π(j), and the terms
µj and σj .

The procedure of maximum likelihood estimation of a mixture model is not simple,
due to existence of local minima and singular solutions. Standard nonlinear optimisation
techniques can be employed, once the gradients of the log-likelihood with respect to the
parameters is given. However, there exist algorithms which avoid the complexity of a
nonlinear estimation procedure. One of them is the EM algorithm, which will be introduced
in the following section.
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A.1.2.2 The EM algorithm

The expectation-maximisation or EM algorithm [53] is a simple and practical method for
estimating the mixture parameters avoiding complex nonlinear optimisation algorithm.

The assumption of the EM algorithm is that the available dataset is incomplete. This
incompleteness can either be due to some missing measurements or because some imaginary
data are introduced to simplify the mathematical form of the likelihood function.

The second situation is assumed to hold in the case of mixture models. The goal of
the EM algorithm is then to maximize the likelihood of the parameters of a mixture model
assuming that some data is missing in the available dataset.

The algorithm has an iterative form in which each iteration consists of two steps: an
expectation calculation (E step) and a maximisation (the M step). It has been shown in
literature that the iteration of EM estimates converge to a local maximum of the likelihood
of the incomplete data.

Assume that there exists a statistical model of our datasetDN and that it is parametrized
by a real vector θ. Assume also that further data, denoted by Ξ, exist but are not observ-
able. The quantity ∆N is used to denote the whole dataset, containing both the observed
and unobserved data, and is usually referred to as the complete data.

Let us denote by lcomp(θ) the log likelihood of the parameter θ given the complete data.
This is a random variable because the values of Ξ are not known. Hence, it is possible for a
given value θ(τ) of the parameter vector to compute the expected value of lcomp(θ

(τ)). This
gives a deterministic function of the current value of the parameter, denoted by Q(θ(τ)),
that can be considered as an approximation to the real value of l, called the incomplete
likelihood. The maximisation step is expected to find the parameter value θ(τ+1) which
maximize Q. The EM procedure in detail is the following:

1. Make an initial estimate θ(0) of the parameter vector.

2. The log likelihood lcomp(θ
(τ)) of the parameters θ(τ) with respect to the complete

data ∆N is calculated. This is a random function of the unknown dataset Ξ.

3. The E-step: the expectation Q(θ(τ)) of lcomp(θ
(τ)) is calculated.

4. The M-step: a new estimate of the parameters is found by the maximisation

θ(τ+1) = arg max
θ
Q(θ) (A.1.15)

The theoretical justification comes from the following result proved in [53]: for a sequence
θ(τ) generated by the EM algorithm it is always true that for the incomplete likelihood

l(θ(τ+1)) ≥ l(θ(τ)) (A.1.16)

Hence the EM algorithm is guaranteed to converge to a local maximum of the incomplete
likelihood.

A.1.2.3 The EM algorithm for the mixture model

In the mixture model estimation problem the problem of determining the parameters (i.e.
the mixing coefficients and the parameters of the density p(z|j) in Eq. (A.1.12)) would be
straightforward if we knew which component j was responsible for generating each data
point in the dataset. We therefore consider a hypothetical complete dataset in which each
data point is labeled by the component which generated it. Thus, for each point zi we
introduce m indicator random variables ζij , j = 1, . . . ,m, such that

ζij =

{
1 if zi is generated by the jth basis

0 otherwise
(A.1.17)

Let ∆N be the extension of the dataset DN , i.e. it represents the complete dataset,
including the unobservable ζij . The probability distribution for each (zi, ζij) is either zero
or p(zi|j). If we let ζi represent the set {ζi1, ζi2, . . . , ζim} then

pζi(ζi) = π(j′) where j′ is such that ζij′ = 1 (A.1.18)
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so

p(zi, ζi) = p(ζi)p(zi|j′) = π(j′)p(zi|j′) =

m∏
j=1

[π(j)p(zi|j)]ζij (A.1.19)

Thus the complete log likelihood is given by

lcomp(θ) = ln Lcomp(θ) = ln

N∏
i=1

m∏
j=1

[π(j)p(zi|j)]ζij (A.1.20)

=

N∑
i=1

ln

m∏
j=1

[π(j)p(zi|j)]ζij (A.1.21)

=

N∑
i=1

m∑
j=1

ζij{lnπ(j) + ln p(zi|j)} (A.1.22)

where the vector θ includes the mixing coefficients and the parameters of the density p(z|j)
in Eq. (A.1.12).

Introducing the terms ζij the logarithm can be brought inside the summation term.
The cost of this algebraic simplification is that we do not know the values of the ζij for

the training data. At this point the EM algorithm can be used. For a value θ(τ) of the
parameters the E-step is carried out:

Q(θ(τ)) = E[lcomp(θ
(τ)) = E[

N∑
i=1

m∑
j=1

ζij{lnπ(j) + ln p(zi|j)}] (A.1.23)

=

N∑
i=1

m∑
j=1

E[ζij ]{lnπ(j) + ln p(zi|j)} (A.1.24)

Since

E[ζij ] = P (ζij = 1|zi) =
p(zi|ζij)P (ζij)

p(zi)
=
p(zi|j)π(j)

p(zi)
= p(j|zi) (A.1.25)

from Eq. (A.1.14) and (A.1.18) we have

Q(θ(τ)) =

N∑
i=1

m∑
j=1

p(j|zi){lnπ(j) + ln p(zi|j)} (A.1.26)

The M-step maximizes Q with respect to the whole set of parameters θ but it is known
that this can be done individually for each parameter, if we consider a Gaussian mixture
model

p(z|j) =
1

(2πσj2)n/2
exp

{
− (z − µj)2

2σj2

}
(A.1.27)

In this case we have:

Q(θ(τ)) =

N∑
i=1

m∑
j=1

p(j|zi){lnπ(j) + ln p(zi|j)} (A.1.28)

=

N∑
i=1

m∑
j=1

p(j|zi)
{

lnπ(j)− n lnσj
(τ) − (zi − µj(τ))2

2(σj(τ))2

}
+ constant (A.1.29)

We can now perform the maximisation (A.1.15). For the parameters µj and σj the max-
imisation is straightforward:

µ
(τ+1)
j =

∑N
i=1 p(j|zi)zi∑N
i=1 p(j|zi)

(A.1.30)

(
σ

(τ+1)
j

)2

=
1

n

∑N
i=1 p(j|zi)(zi − µ

(τ+1)
j )2∑N

i=1 p(j|zi)
(A.1.31)
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For the mixing parameters the procedure is more complex [25] and returns:

π(j)(τ+1) =
1

N

N∑
i=1

p(j|zi) (A.1.32)

where p(j|zi) is computed as in (A.1.25).

A.2 K-means clustering

The K-means algorithm partitions a collection of N vectors xi, i = 1, . . . , N , into K groups
Gk, k = 1, . . . ,K, and finds a cluster center in each group such that a cost function of
dissimilarity (or distance) measure is minimized. When the Euclidean distance is chosen
as the dissimilarity measure between a vector x in the kth group and the corresponding
cluster center ck, the cost function can be defined by

J =

K∑
k=1

Jk =

K∑
k=1

∑
x∈Gk

d(x, ck) (A.2.33)

where Jk is the cost function within group k and d is a generic distance function

d(x, ck) = (x− ck)TM(x− ck) (A.2.34)

where M is the distance matrix. The partitioned groups are typically defined by a mem-
bership [K ×N ] matrix U , where the element uki is 1 if the ith data point xi belongs to
group k, and 0 otherwise. The matrix U satisfies the following conditions:

K∑
k=1

uki = 1 ∀i = 1, . . . , N

K∑
k=1

N∑
i=1

uki = N

(A.2.35)

Once the cluster centers ck are fixed, the terms uki which minimize Eq. (A.2.33) are:

uki =

{
1 if d(xi, ck) ≤ d(xi, cj), for each j 6= k

0 otherwise
(A.2.36)

This means that xi belongs to the group k if ck is the closest center among all centers.
Once the terms uki are fixed, the optimal center ck that minimizes Eq. (A.2.33) is the

mean of all vectors in the kth group:

ck =
1

|Gk|
∑
x∈Gk

x (A.2.37)

where |Gk| is the size of Gk.
The K-means algorithm determines iteratively the cluster centers ck and the member-

ship matrix U using the following procedure:

1. Initialize the cluster centers ck, typically by randomly selecting K points among all
data points.

2. Evaluate the membership matrix U through Eq. (A.2.36).

3. Compute the cost (A.2.33). If it is below a certain tolerance value or if the improve-
ment is not significant, stop and return the centers and the groups.

4. Update the cluster centers according to Eq. (A.2.37). Go to step 2.

Some final remarks should be made on the K-means algorithm. As many other clustering
algorithms, this technique is iterative and no guarantee of convergence to an optimum
solution can be found. Also, the final performance is quite sensitive to the initial position
of the cluster centers and to the number K of clusters, typically fixed a priori by the
designer.

The script Appendix/kmeans.R implements and visualises the outcome of the algorithm
in a simple bidimensional task.
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Linear algebra notions

Linear algebra, the science of vector spaces, plays a major role in machine learning, where
data are represented in a vectorial form. Though the readers are supposed to have attended
numerical analysis classes, here we will remind some basic notions of linear algebra. For a
more extensive presentation of linear algebra and its links with machine learning, we refer
the reader to recent references like [2, 52].

B.1 Rank of a matrix

Let us consider a [N,n] matrix. Many definitions exist for the rank of a matrix: here we
limit to consider the rank of X as the maximal number of linearly independent columns
of X. Since the rank of a [N,n] matrix is at most min{N,n}, a matrix is full-rank if its
rank is min{N,n}. A matrix which is not full-rank is also called rank-deficient.

B.2 Inner product

In linear algebra, the dot product, also known as the scalar or inner product, is an operation
which takes two vectors over the real numbers R and returns a real-valued scalar quantity.
It is the standard inner product of the orthonormal Euclidean space. The dot product of
two [n, 1] vectors x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]T is defined as:

〈x, y〉 =

n∑
j=1

xjyj = xT y (B.2.1)

The dot product underlies the definition of the following quantities:

• the Euclidean norm of a vector x:

‖x‖ =
√
〈x, x〉, (B.2.2)

also known as the L2 norm,

• the Euclidean distance of two [n, 1] vectors x1 and x2

‖x1 − x2‖ =
√
〈x1 − x2, x1 − x2〉, (B.2.3)

• the angle ω between two vectors x1 and x2 which satisfies the relation

− 1 ≤ 〈x1x2〉
‖x1‖‖x2‖

= cos(ω) ≤ 1, (B.2.4)

• the projection of a vector x1 onto a direction x2

πx2(x1) =
〈x1, x2〉
‖x2‖2

x2 =
x2x

T
2

‖x2‖
x1 (B.2.5)

where the [n, n] matrix P = x2x
T
2 is called the projection matrix.
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In more qualitative terms, the notion of inner product allows the introduction of a
similarity score between vectors. In this sense, the least similar vectors are two orthogonal
vectors, i.e. two vectors x and y such that 〈x, y〉 = 0 and ω = π/2.

Note also that the following relation holds:

xxT y = 〈x, y〉x

B.3 Diagonalisation

A [N,N ] matrix X is diagonalisable if it exists an invertible matrix P such that

X = PDP−1. (B.3.6)

A symmetric matrix can always be diagonalised and the diagonal entries of D are its
eigenvalue.

B.4 QR decomposition

Let us consider a [N,n] matrix X with N ≥ n and n linearly independent columns. By
Gram-Schmidt orthogonalisation [2] it is possible to write

X = QR (B.4.7)

where Q is a [N,n] matrix with n orthonormal columns qj (i.e. qTj qj = 1 and qTj qk = 0 if
j 6= k) and R is a [n, n] upper-triangular matrix. Since QTQ = In the pseudo-inverse of
X can be written as

X† = (XTX)−1XT = (RTQTQR)−1RTQT = R−1QT (B.4.8)

If X is rank-deficient (i.e. only n′ < n < N columns of X are linearly independent) it
is possible to perform the generalised QR decomposition

X = QR

where Q is [N,n′] and R is a [n′, n] rectangular upper-triangular matrix with n′ < n. Since
R is of full row rank, the matrix RRT is invertible and the pseudo-inverse of X can be
written as

X† = RT (RRT )−1QT (B.4.9)

also known as the Moore-Penrose pseudo-inverse.

B.5 Singular Value Decomposition

Let us consider a [N,n] matrix X with N ≥ n: such matrix can always be factorised into
the product of three matrices

X = UDV T (B.5.10)

where U is a [N,N ] matrix with orthonormal columns (i.e. UTU = IN ), D is a [N,n]
diagonal matrix whose diagonal entries dii ≥ 0 are called the singular values and V is a
[n, n] matrix with orthonormal columns.

It can be shown that the N columns of U (also called the left singular vectors) are the
N eigenvectors of the [N,N ] symmetric matrix XXT and the n columns of V (also called
the right singular vectors) are the n eigenvectors of the [n, n] symmetric matrix XTX.
The non-zero singular values are the square-roots of the non-zero eigenvalues of XTX and
of the non-zero eigenvalues of XXT . This is made evident by the link between SVD and
diagonalisation of XTX :

XTX = (UDV T )T (UDV T ) = V DTUTUDV T = V DTDV T
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The SVD of a matrix X of rank r can be written also as:

X =

r∑
j=1

diiuiv
T
i

where uj is the jth column of U and vj is the jth column of V.
If in the decomposition above we stop at the order r′ < r, we obtain a low-rank

approximation of X:

X ′ =

r′∑
j=1

diiuiv
T
i .

Another common SVD decomposition is the economy (or reduced) SVD:

X = UDV T (B.5.11)

where k = min{N,n}, U is [N, k] with orthonormal columns, D is a square [k, k] matrix
and V is a [n, k] matrix with orthonormal columns.

SVD plays an important role in determining the ill-conditioning of a square matrix,
i.e. how much the matrix is close to be singular. The condition number of a matrix is the
ratio of its largest singular value to its smallest singular value. The larger this number
(which is ≥ 1) the larger is the ill-conditioning of the matrix.

Note also that if X is a symmetric matrix, the SVD decomposition returns the diago-
nalisation (B.3.6).

B.6 Chain rules of differential calculus

Let J be the scalar function of α ∈ R:

J(α) = f(g(h(α)))

where f, g, h : R→ R are scalar functions. Then the univariate chain rule is

dJ

dα
=
dJ

df

df

dg

dg

dh

dh

dα

Let us consider the function J : R→ R

J = f(g1(α), g2(α), . . . , gn(α))

between α ∈ R and the scalar J , where gj : R → R, j = 1, . . . , n. Then the multivariate
chain rule returns the scalar gradient

dJ

dα
=

n∑
j=1

∂J

∂gj

(
dgj
dα

)
Let J : Rn → Rm be the mapping between an input vector α ∈ Rn and an output

vector of size m. The associated Jacobian matrix is the [m,n] matrix

∇αJ =
[
∂J(α)
∂α1

∂J(α)
∂α2

. . . , ∂J(α)
∂αn

]
=


∂J1(α)
∂α1

∂J1(α)
∂α2

. . . ∂J1(α)
∂αn

...
...

...
∂Jm(α)
∂α1

∂Jm(α)
∂α2

. . . ∂Jm(α)
∂αn


In the most generic case, suppose that J = Rn → Rm, α ∈ Rn, and

J = Fk(Fk−1(. . . F1(α)))

where Fi : Rni → Rni+1 , n1 = n and nk+1 = m. Then the vectored chain rule [2] is

∂J

∂α︸︷︷︸
[m,n]

=
∂Fk
∂Fk−1︸ ︷︷ ︸
[m,nk]

∂Fk−1

∂Fk−2︸ ︷︷ ︸
[nk,nk−1]

. . .
∂F1

∂α︸︷︷︸
[n2,n]



334 APPENDIX B. LINEAR ALGEBRA NOTIONS

B.7 Quadratic norm

Consider the quadratic norm
J(x) = ‖Ax+ b‖2

where J : Rn → R, A is a [N,n] matrix, x is a [n, 1] vector and b is a [N, 1] vector. It can
be written in the matrix form

J(x) = xTATAx+ 2bTAx+ bT b

The first derivative of J with respect to x is the [n, 1] vector

∂J(x)

∂x
= 2AT (Ax+ b)

and the second derivative is the [n, n] matrix

∂2J(x)

∂x∂xT
= 2ATA

B.8 The matrix inversion formula

Let us consider the four matrices F , G, H and K and the matrix F +GHK. Assume that
the inverses of the matrices F , G and (F +GHK) exist. Then

(F +GHK)−1 = F−1 − F−1G
(
H−1 +KF−1G

)−1
KF−1 (B.8.12)

Consider the case where F is a [n× n] square nonsingular matrix, G = z where z is a
[n× 1] vector, K = zT and H = 1. Then the formula simplifies to

(F + zzT )−1 = F−1 − F−1zzTF−1

1 + zTFz

where the denominator in the right hand term is a scalar.
If X and Z are two [N, p] matrices, from (B.8.12) it can be shown the push-through

identity [2]

XT (IN + ZXT )−1 = (Ip +XTZ)−1XT (B.8.13)

Then for any [N, p] matrix X and scalar λ > 0

XT (λIN +XXT )−1 = (λIp +XTX)−1XT (B.8.14)



Appendix C

Optimisation notions

Optimisation is the workhorse of machine learning algorithms: all machine learning tech-
niques rely on the optimisation of some cost function, as made explicit by the notions of
maximum likelihood, least-squares or more in general parametric identification. In this
appendix we will review some basic notions of optimisation but the reader should be aware
that optimisation is such a wide research domain that, for the sake of completeness, she
should refer to texts like [76, 33, 2].

An optimisation problem is characterised by an objective function (also called cost or
loss function) J(x) of a set x = [x1, . . . , xn]T of n optimisation variables. The goal is to
compute the values of the optimisation variables

x∗ = arg min
x
J(x) (C.0.1)

at which the cost function J : Rn → R is minimised (or its opposite maximised) subject
to m constraints

Ji(x) ≤ ci, i = 1, . . . ,m (C.0.2)

where Ji(·) are the constraint functions.

If m = 0, i.e. no constraints are imposed on the set of feasible values of the solution
x∗, the optimisation problem is called unconstrained.

If both the objective and the constraint functions are linear where a linear function
satisfies the equality

J(w1x1 + w2x2) = w1J(x1) + w2J(x2), w1, w2 ∈ R

the optimisation problem is linear otherwise it is non-linear.

If both the objective and the constraint functions are convex where a convex function
satisfies the inequality

J(w1x1 + w2x2) ≤ w1J(x1) + w2J(x2), w1 + w2 = 1, w1 ≥ 0, w2 ≥ 0 (C.0.3)

the problem is called convex. Form the definition above it appears that a linear optimisa-
tion problem is an instance of convex optimisation.

Special cases of convex optimisation are least-squares problems and linear programming

C.1 Least-squares

A least-squares optimisation problem is an unconstrained optimisation problem where the
cost function is

J(x) = ‖Ax− b‖22
b is [N, 1] vector and A is a [N,n] matrix. The solution (see Section 7.1.11) is

x∗ = (ATA)−1AT b
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C.2 Linear programming

A linear programming optimisation problem is a problem where both the objective and
the constraint functions are linear

x∗ = arg min
x
cT x

subject to
aTi x ≤ bi, i = 1, . . . ,m

where ai are [n, 1] vectors and bi ∈ R.
Unlike the least-squares problem, there is no simple analytical formula to compute the

solution but there are very effective methods, like the simplex or the interior-point method.

C.3 Quadratic programming

Quadratic programming is the resolution procedure of continuous optimisation problems
with a squared objective function, for instance

x∗ = arg min
x
J(x) = arg min

x
xTDx

where x is a [n, 1] vector and D is a [n, n] matrix. For instance if n = 2 and A is a
diagonal matrix, J(x) = x2

1 + x2
2 and has a single global minimum in [0, 0]. If the solution

is submitted to no constraints, the problem is called unconstrained. If D is a positive
(negative) semidefinite matrix the function J is convex (concave).

In machine learning the most common quadratic programming task is strictly convex
(definition (C.0.3)) since it derives from the least-squares formulation (Section (C.1)) where
D is a definite positive matrix. The general form of an unconstrained strictly convex
quadratic objective function is

x∗ = J(b) = arg min
x

xTDx− dT x + k = arg min
x

xTDx− dT x (C.3.4)

where D is definite positive, d is a [n, 1] vector and k is a scalar (which has no impact on
the minimisation problem).

The constrained version has a set of linear inequality constraints in the form

AT b ≥ x0

where A is a [n, c] matrix defining the c constraints under which we want to minimise the
J function.

The R package quadprog provides the implementation solve.QP of a method to solve
a strictly convex constrained quadratic programming task.



Appendix D

Probability and statistical
notions

D.1 Common univariate discrete probability func-
tions

D.1.1 The Bernoulli trial

A Bernoulli trial is a random experiment with two possible outcomes, often called “suc-
cess” and “failure”. The probability of success is denoted by p and the probability of
failure by (1− p). A Bernoulli random variable z is a binary discrete r.v. associated with
the Bernoulli trial. It takes z = 0 with probability (1− p) and z = 1 with probability p.

The probability function of z can be written in the form

Prob {z = z} = Pz(z) = pz(1− p)1−z, z = 0, 1

Note that E[z] = p and Var [z] = p(1− p).

D.1.2 The Binomial probability function

A binomial random variable represents the number of successes z in a fixed number N of
independent Bernoulli trials with the same probability p of success for each trial. A typical
example is the number z of heads in N tosses of a coin.

The probability function of z ∼ Bin(N, p) is given by

Prob {z = z} = Pz(z) =

(
N

z

)
pz(1− p)N−z, z = 0, 1, . . . , N (D.1.1)

The mean of the probability function is µ = Np. Note that:

• the Bernoulli probability function is a special case (N = 1) of the binomial function,

• for small p, the probability of having at least 1 success in N trials is proportional to
N , as long as Np is small,

• if z1 ∼ Bin(N1, p) and z2 ∼ Bin(N1, p) are independent then z1 + z2 ∼ Bin(N1 +
N2, p)

The Binomial distribution returns then the probability of z successes out of N draws
with replacement. The probability of z successes out of N draws without replacement
from a population of size P that contains k terms associated to success is returned by the
hypergeometric distribution:

Prob {z = z} =

(
k
z

)(
P−k
N−z

)(
P
N

) . (D.1.2)
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D.2 Common univariate continuous distributions

D.2.1 Uniform distribution

A random variable z is said to be uniformly distributed on the interval (a, b) (written as
z ∼ U(a, b)) if its probability density function is given by

p(z) =

{
1
b−a if a < z < b

0, otherwise

It can be shown that the skewness of a continuous random variable which is uniformly
distributed is equal to 0.

Exercise

Show that the variance of U(a, b) is equal to 1
12

(b− a)2.

•

D.2.2 The chi-squared distribution

It describes the distribution of squared normal r.v.s. An r.v. z has a χ2
N distribution if

z = x2
1 + · · ·+ x2

N

where N ∈ N and x1,x2,. . . ,xN are i.i.d. standard normal random variables N (0, 1). The
distribution is called a chi-squared distribution with N degrees of freedom. Note also that

• The probability distribution is a gamma distribution with parameters ( 1
2
N, 1

2
).

• E[z] = N and Var [z] = 2N .

The χ2
N density and distribution function for N = 10 are plotted in Figure D.1 (R script

Appendix/chisq.R in the package gbcode).

D.2.3 Student’s t-distribution

It describes the distribution of the ratio of normal and χ squared r.v.s. If x ∼ N (0, 1) and
y ∼ χ2

N are independent then the Student’s t-distribution with N degrees of freedom is
the distribution of the r.v.

z =
x√
y/N

(D.2.3)

We denote this with z ∼ TN . Note that E[z] = 0 and V ar[z] = N/(N − 2) if N > 2.

The Student density and distribution function for N = 10 are plotted in Figure D.2
by means of the script Appendix/stu.R in the package gbcode .
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Figure D.1: χ2
N probability distribution (N = 10)

Figure D.2: Student probability distribution (N = 10)
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Figure D.3: F probability distribution (N = 10)

D.2.4 F-distribution

It describes the distribution of the ratio of χ squared r.v.s. Let x ∼ χ2
M and y ∼ χ2

N be
two independent r.v.. An r.v. z has a F-distribution with M and N degrees of freedom
(written as z ∼ FM,N ) if

z =
x/M

y/N
(D.2.4)

Note that if z ∼ FM,N then 1/z ∼ FN,M , while if z ∼ TN then z2 ∼ F1,N . The F-density
and distribution function are plotted in Figure D.3 by means of the script Appendix/f.R

in the package gbcode .

D.3 Common statistical hypothesis tests

D.3.1 χ2-test: single sample and two-sided

Consider a random sample from N (µ, σ2) with µ known. Let

H : σ2 = σ2
0 ; H̄ : σ2 6= σ2

0

Let ŜS =
∑
i(zi − µ)2. From Section 3.7 it follows that if H is true then ŜS/σ2

0 ∼ χ2
N

(Section D.2.2 )

The level α χ2-test rejects H if ŜS/σ2
0 < a1 or ŜS/σ2

0 > a2 where

Prob

{
ŜS

σ2
0

< a1

}
+ Prob

{
ŜS

σ2
0

> a2

}
= α

A slight modification is necessary if µ is unknown. In this case you must replace µ
with µ̂ in the quantity ŜS and use a χ2

N−1 distribution.

D.3.2 t-test: two samples, two sided

Consider two r.v.s x ∼ N (µ1, σ
2) and y ∼ N (µ2, σ

2) with the same variance. Let Dx
N ← x

and Dy
M ← y two independent sets of samples of size N and M , respectively..

We want to test H : µ1 = µ2 against H̄ : µ1 6= µ2.
Let

µ̂x =

∑N
i=1 xi

N
, ŜSx =

N∑
i=1

(xi − µ̂x)2, µ̂y =

∑M
i=1 yi

M
, ŜSy =

M∑
i=1

(yi − µ̂y)2

It can be shown that if H is true then the statistic

t(DN ) =
µ̂x − µ̂y√(

1
M

+ 1
N

) ( ŜSx+ŜSy
M+N−2

) ∼ TM+N−2
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It follows that the test of size α rejects H if

|t(DN )| > tα/2,M+N−2

D.3.3 F-test: two samples, two sided

Consider a random sample {x1, . . . , xM} ← x ∼ N (µ1, σ
2
1) and a random sample {y1, . . . , yN} ←

y ∼ N (µ2, σ
2
2) with µ1 and µ2 unknown. Suppose we want to test

H : σ2
1 = σ2

2 ; H̄ : σ2
1 6= σ2

2

Let us consider the statistic

f =
σ̂2

1

σ̂2
2

=
ŜS1/(M − 1)

ŜS2/(N − 1)
∼
σ2

1χ
2
M−1/(M − 1)

σ2
2χ

2
N−1/(N − 1)

=
σ2

1

σ2
2

FM−1,N−1

It can be shown that if H is true, the ratio f has a F-distribution FM−1,N−1 (Section
D.2.4) The F-test rejects H if the ratio f is large, i.e. f > Fα,M−1,N−1 where

Prob {f > Fα,M−1,N−1} = α

if f ∼ FM−1,N−1.

D.4 Transformation of random variables and vec-
tors

Theorem 4.1 (Jensen’s inequality). Let x be a continuous r.v. and f a convex function.
Then, E[f(x)] ≥ f(E[x]) while if f is concave then E[f(x)] ≤ f(E[x])

Given a [n × 1] constant vector a and a random vector z of dimension [n × 1] with
expected value E[z] = µ and covariance matrix [z] = Σ, then

E[aT z] = aTµ, Var
[
aT z

]
= aTΣa

Also if z ∼ N (µ,Σ) then aT z ∼ N (aTµ, aTΣa)

Given a [n × n] constant matrix A and a random vector z of dimension [n × 1] with
expected value E[z] = µ and covariance matrix Var [z] = Σ, then

E[Az] = Aµ, Var [Az] = AΣAT (D.4.5)

R script

The relation above may be used to sample a [n, 1] random vector x with covariance
Var [x] = Σ, starting from the sampling of a [n, 1] random vector z with Var [z] =
In. If we factorize Σ = AAT , then Var [x] = Var [Az] = AInA

T = Σ. In the script
Appendix/chol2cor.R, we first define the symmetric matrix Σ, then we sample N times
the z vector in the dataset DN and we multiply DN by A: it is possible to verify numeri-
cally that this is equivalent to sample N times a vector x with covariance Σ.

•

Theorem 4.2. Given a random vector z of dimension [n×1] with expected value E[z] = µ
and covariance matrix Var[z] = σ2I, for a generic matrix A of dimension [n × n] the
following relation holds

E[zTAz] = σ2tr(A) + µTAµ (D.4.6)

where tr(A) is the trace of matrix A.
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D.5 Correlation and covariance matrices

Given n r.v.s z1, . . . , zn the correlation matrix C is a symmetric positive-semidefinite [n, n]
matrix whose (i, j) entry is the correlation coefficient ρ(zi, zj) (Equation (2.14.72)).

The following relation exists between the covariance Σ of the n variables and the
correlation matrix:

C = (diag(Σ))−1/2 Σ (diag(Σ))−1/2 , Σ =


σ1 . . . . . . 0
0 σ2 . . . 0

0 . . .
. . . 0

0 . . . . . . σn

C

σ1 . . . . . . 0
0 σ2 . . . 0

0 . . .
. . . 0

0 . . . . . . σn


By using the formula above, the script Appendix/corcov.R shows how it is possible to

generate a set of examples with predefined pairwise correlation ρ̄.

D.6 Conditioning reduce entropy

Let us consider two discrete r.v.s x ∈ X and y ∈ Y. Since

H(y) = −
∑
y∈Y

Py(y) logPy(y)

and

H(y|x) = −
∑
x∈X

Px(x)
∑
y∈Y

Py(y|x) logPy(y|x)

we have

I(x; y) = H(y)−H(y|x) =

= −
∑
y∈Y

∑
x∈X

Pxy(x, y) logPy(y) +
∑
x∈X

Px(x)
∑
y∈Y

Py(y|x) logPy(y|x) =

= −
∑
x,y

P (x, y) logP (y) +
∑
x,y

P (x, y) logP (y|x) =

=
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)

Let us introduce the convex function ϕ(x) = x log(x). Since

ϕ

(
P (x, y)

P (x)P (y)

)
=

P (x, y)

P (x)P (y)
log

P (x, y)

P (x)P (y)

we can write

I(x; y) =
∑
x,y

P (x)P (y)ϕ

(
P (x, y)

P (x)P (y)

)
From the Jensen’s theorem 4.1 we obtain

I(x; y) =
∑
x,y

P (x)P (y)ϕ

(
P (x, y)

P (x)P (y)

)
≥ ϕ

(∑
x,y

P (x)P (y)
P (x, y)

P (x)P (y)

)
= ϕ(1) = 0

that is, I(x; y) ≥ 0.

D.7 Convergence of random variables

Let {zN}, N = 1, 2, . . . , be a sequence of random variables and let z be another random
variable. Let FN (·) denote the distribution function of zN and Fz the distribution of z.
We introduce the following definitions:
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Definition 7.1 (Convergence in probability). We say that

lim
N→∞

zN = z in probability (D.7.7)

and we note zN
P→ z if for each ε > 0

lim
N→∞

P{|zN − z| ≥ ε} = 0 (D.7.8)

Definition 7.2 (Convergence with probability one). We say that

lim
N→∞

zN = z with probability one (or almost surely) (D.7.9)

and we note zN
a.s.→ z if

P{ω : lim
N→∞

zN (ω) = z(ω)} = 1 (D.7.10)

Definition 7.3 (Convergence in Lp). For a fixed number p ≥ 1 we say that

lim
N→∞

zN = z in Lp (D.7.11)

if

lim
N→∞

E [|zN − z|p] = 0 (D.7.12)

The following theorems hold:

Theorem 7.4. Convergence in Lp implies convergence in probability.

Theorem 7.5. Convergence with probability one implies convergence in probability.

Note however that convergence in probability does not imply convergence in L2.

Definition 7.6 (Convergence in distribution). The sequence zN converges in distribution

to z and we note zN
D→ z if

lim
N→∞

FN (z) = F (z) (D.7.13)

for all z for which F is continuous.

It can be shown that

Theorem 7.7. Convergence with probability implies convergence in distribution.

Note however that convergence in distribution does not imply convergence in proba-
bility.

As a summary

zN
a.s.→ z implies zN

P→ z implies zN
D→ z

D.7.1 Example

Let z ∼ U(1, 2) and θ = 0. Consider the two estimators (stochastic processes) θ̂
(1)

N and

θ̂
(2)

N for N →∞ where

θ̂
1

N = exp−zN , θ̂
2

N =

{
exp−N with probability 1− 1/N

1 with probability 1/N

For the first estimator, all the trajectories converge to θ (strongly consistent). For the
second process, the trajectory which does not converge has a probability decreasing to
zero for N →∞ (weakly consistent).
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D.8 The central limit theorem

Theorem 8.1. Assume that z1,z2,. . . ,zN are i.i.d. random variables, discrete or contin-
uous, each having the same probability distribution with finite mean µ and finite variance
σ2. As N →∞, the standardised random variable

(z̄− µ)
√
N

σ

which is identical to
(SN −Nµ)√

Nσ

converges in distribution (Definition 7.6) to a r.v. having the standardized normal distri-
bution N (0, 1).

This theorem, which holds regardless of the common distribution of zi, justifies the
importance of the normal distribution, since many r.v. of interest are either sums or
averages. Think for example to the commute time of the example in Section 2.10 which
can be considered as the combined effect of several causes.

An illustration of the theorem by simulation is obtained by running the R script
central.R.

D.9 The Chebyshev’s inequality

Let z be a generic random variable, discrete or continuous, having a mean µ and a variance
σ2. The Chebyshev’s inequality states that for any positive constant d

Prob {|z− µ| ≥ d} ≤ σ2

d2
(D.9.14)

A validation of the Chebyshev’s inequality by Monte Carlo simulation can be found in
the R script Appendix/cheby.R.

Note that if we put z equal to the quantity in (2.19.96), then from (2.19.97) and
(D.9.14) we find

Prob {|z̄− µ| ≥ d} ≤ σ2

Nd2
(D.9.15)

i.e. the weak law of large numbers (Section 2.2.2.1). This law states that the average of a
large sample converges in probability to the mean of the distribution.

D.10 Empirical distribution properties

Let (3.2.2) be the empirical distribution of z obtained from a dataset DN . Note that, being
DN a random vector, the function F̂z(·) is random, too. The following two properties
(unbiasedness and consistency) are valid:

Theorem 10.1. For any fixed z

EDN [F̂z(z)] = Fz(z) (D.10.16)

Var
[
F̂z(z)

]
=
Fz(z)(1− Fz(z))

N
(D.10.17)

Theorem 10.2 (Glivenko-Cantelli theorem).

sup
−∞<z<∞

|F̂z(z)− Fz(z)| N→∞→ 0 almost surely (D.10.18)

where the definition of almost sure convergence is in Appendix (Def. 7.2).

The two theoretical results can be simulated by running the R scripts Appendix/cumdis 2.R

and Appendix/cumdis 1.R, respectively.
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D.11 Useful relations

Some relations

E[(z− µ)2] = σ2 = E[z2 − 2µz + µ2] = E[z2]− 2µE[z] + µ2

= E[z2]− 2µµ+ µ2 = E[z2]− µ2

For N = 2

E[(z1 + z2)2] = E[z2
1] + E[z2

2] + 2E[z1z2]

= 2E[z2] + 2µ2

= 4µ2 + 2σ2

For N = 3

E[(z1 + z2 + z3)2] = E[z2
1] + E[z2

2] + E[z2
3] + 2E[z1z2] + 2E[z1z3] + 2E[z2z3]

= 3E[z2] + 6µ2 = 9µ2 + 3σ2

In general for N i.i.d. zi, E[(z1 + z2 + · · ·+ zN )2] = N2µ2 +Nσ2.

D.12 Minimum of expectation vs. expectation of
minimum

Theorem 12.1. Let us consider M random variables zm,m = 1, . . . ,M . Then

E[min
m

zm] ≤ min
m

E[zm]

Proof. For each m define the r.v. xm = zm − minm zm. Now E[xm] ≥ 0 since zm ≥
minm zm. Then E[zm]− E[minm zm] ≥ 0. It follows that

∀m, E[min
m

zm] ≤ E[zm]

then
E[min

m
zm] ≤ min

m
E[zm]

The difference minmE[zm]−E[minm zm] quantifies then the selection bias that occurs
in a selection (e.g. by minimisation) process that relies on observed data in a random
setting.

D.13 Taylor expansion of function

Let J(·) be a function with pdimensional argument of the form α = [α1, . . . , αp]. The
Taylor expansion of the function J(·) about ᾱ can be written as follows

J(α) = J(ᾱ) +

p∑
j=1

(αi − ᾱi)
∂J(α)

∂αj

∣∣∣
α=ᾱ

+

p∑
i=1

p∑
j=1

(αi − ᾱi)(αj − ᾱj)
2

∂2J(α)

∂αi∂αj

∣∣∣
α=ᾱ

+ . . .

which can be written in vector-form as follows:

J(α) ≈ J(ᾱ) + (α− ᾱ)T∇J(ᾱ) + (α− ᾱ)TH(ᾱ)(α− ᾱ)

where ∇J(α) is the gradient vector and H(α) = [Hij ] is the Hessian square matrix [p, p]
of all second-order derivatives

Hij =
∂2J(α)

∂αi∂αj
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D.14 Proof of Eq. (5.5.28)

Since the cost is quadratic, the input uniform density is π(x) = 1
4

in the interval [−2, 2],
the regression function is x3 and the noise is i.i.d. with unit variance, from Eq. (5.2.3) we
obtain

R(α) =

∫
X ,Y

C(y, αx)pf (y|x)π(x)dy dx (D.14.19)

=

∫ 2

x=−2

∫
Y

(y − αx)2pf (y|x)π(x)dx dy (D.14.20)

=

∫ 2

x=−2

∫
W

(x3 + w − αx)2pw(w)
1

4
dx dw (D.14.21)

=
1

4
[

∫
W
pw(w)dw

∫ 2

x=−2

(x3 − αx)2dx+ (D.14.22)

+

∫ 2

x=−2

dx

∫
W
w2pw(w)dw +

∫
W

∫ 2

x=−2

2w(x3 − αx)pw(w)dwdx] (D.14.23)

=
1

4

[∫ 2

−2

(x3 − αx)2dx+ 4σ2
w

]
(D.14.24)

=
1

4

∫ 2

−2

(x3 − αx)2dx+ σ2
w (D.14.25)

D.15 Biasedness of the quadratic empirical risk

Consider a regression framework where y = f(x) + w, with E[w] = 0 and Var [w] = σ2
w,

and hN an estimation of f obtained by minimising the empirical risk in a dataset DN ∼ y.
According to the derivation in [60], let us consider the quantity

gN (x) = EDN ,y[(y − h(x, α(DN )))2] = EDN [Ey[(y − hN )2]]

where hN stands for h(x, α(DN )). Since

(y − hN )2 = (y − f + f − hN )2 = (y − f)2 + (f − hN )2 + 2(y − f)(f − hN )

we obtain

(y − f)2 + (f − hN )2 = (y − hN )2 + 2(y − f)(hN − f)

Note that since Ey[y] = f , for a given hN

Ey[(y − hN )2] = Ey[(y − f)2 + (f − hN )2 + 2(y − f)(f − hN )] =

= Ey[(y − f)2 + (f − hN )2]

Since Ey[(y − f)2] = EDN [(y − f)2] and

(y − h)2 = (y − f + f − h)2 = (y − f)2 + (f − h)2 − 2(y − f)(h− f)

it follows

(y − f)2 + (f − h)2 = (y − h)2 + 2(y − f)(h− f)

and

gN (x) = EDN [Ey[(y − hN )2]] =

= EDN [Ey[(y − f)2] + (f − hN )2] = EDN [(y − f)2 + (f − hN )2] =

= EDN [(y − hN )2 + 2(y − f)(hN − f)]

By averaging the quantity gN (x) over the X domain we obtain
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MISE = EDN ,y,x[(y − h(x, α(DN )))2]] =

= EDN ,x[(y − hN )2] + 2EDN ,x[(y − f)(hN − f)] = EDN [M̂ISEemp] + 2Cov[hN ,y]

where Cov[hN ,y] = EDN ,x[(y − f)(hN − f)] and M̂ISEemp is the quantity (5.2.7) for a
quadratic error loss. This means we have to add a covariance penalty term to the apparent

error M̂ISEemp in order to have an unbiased estimate of MISE. A Monte Carlo verification
of this formula is made available in the script Appendix/genercov.R.

Suppose that hN is a linear estimator, i.e.

hN = Sy

where S is known as the smoother matrix. Note that in least-square regression S is the
Hat matrix H = X(XTX)−1XT . In the linear case, since HT = H

NCov[hN ,y] = EDN [(Y − F )T (HY − F )] =

= EDN [YTHY −YTF − FTHY −YTHTF ] = EDN [YTH(Y − F )] =

= σ2tr(H) + FTHF − FTHF = σ2tr(H) = σ2tr((XTX)−1XTX) = σ2p

where tr(H) is the trace of the matrix H, Y is a random vector of size [N, 1] and F is
the vector of the N regression function values f(xi). It follows that Cov[hN ,y] = σ2p/N
and then the Cp formula (6.8.33). Note that the trace of H is also known as the effective
number of parameters.
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Appendix E

Plug-in estimators

This appendix contains the expression of the plug-in estimators of some interesting pa-
rameters:

• Skewness of a random variable z: given a dataset DN = {z1, . . . , zN} the plug-in
estimate of the skewness (2.11.40) is

γ̂ =

∑N
i=1(zi − µ̂)3

Nσ̂3
(E.0.1)

where µ̂ and σ̂ are defined in (3.3.4) and (3.3.5), respectively.

• Kurtosis of a random variable z: given a dataset DN = {z1, . . . , zN} the plug-in
estimate of the kurtosis (2.11.41) is

κ̂ =

∑N
i=1(zi − µ̂)4

Nσ̂4
(E.0.2)

where µ̂ and σ̂ are defined in (3.3.4) and (3.3.5), respectively.

• Correlation of two random variables x and y: given a datasetDN = {〈x1, y1〉, . . . , 〈xN , yN 〉}
where xi ∈ R, yi ∈ R the plug-in estimate of the correlation (2.14.72) is

ρ̂ =

∑N
i=1(xi − µ̂x)(yi − µ̂y)

σ̂xσ̂y
(E.0.3)

where µ̂x (µ̂y) and σ̂2
x (σ̂2

y) denote the sample mean and sample variance of x (y).
The sampling distribution of ρ̂ in the case of linearly related variables (y = Kx) is
computed by Monte Carlo and shown in the R script Appendix/sam cordis.R.

• Covariance matrix of a n-dimensional random vector z: given a dataset DN =
{z1, . . . , zN} where zi = [zi1, . . . , zin]T is a [n, 1] vector, the plug-in estimator of the
covariance matrix (2.15.76) is the [n, n] matrix

Σ̂ =

∑N
i=1(zi − µ̂)(zi − µ̂)T

N − 1
(E.0.4)

whose jk entry is

Σ̂jk =

∑N
i=1(zij − µ̂j)(zik − µ̂k)T

N − 1
and µ̂ is the [n, 1] vector

µ̂ =

∑N
i=1 zi

N
and

µ̂j =

∑N
i=1 zij

N
.

Note that (E.0.4) can be also written in matrix form

Σ̂ =

∑N
i=1(Z − 1N µ̂

T )T (Z − 1N µ̂
T )

N − 1

where Z is a [N,n] matrix whose ith row is zTi and 1N is a [N, 1] vector of ones.
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• Correlation matrix of a n-dimensional random vector z: the correlation matrix is a
symmetric [n, n] matrix whose jk entry is the correlation between the scalar random
variables zj and zk. Given a dataset DN = {z1, . . . , zN} where zi = [zi1, . . . , zin]T

is a [n, 1] vector, the plug-in estimator can be written as the covariance1

P̂ =
Z̃TZ

N

of the scaled matrix
Z̃ = CZD−1

where

C = IN −
1N1TN
N

is the centering [N,N ] matrix, IN is the diagonal unit matrix, 1N is a [N, 1] vector
of ones and

D = diag(σ̂1, . . . , σ̂n)

is a diagonal [n, n] scaling matrix where σ̂2
j is the sample variance of zj .

The diagonal entries of P̂ are all 1. The jkentry (j 6= k) of the matrix P̂ can be also
obtained by applying (E.0.3) to the jth and kth column of Z.

1see also http://users.stat.umn.edu/~helwig/notes/datamat-Notes.pdf

http://users.stat.umn.edu/~helwig/notes/datamat-Notes.pdf


Appendix F

Kernel functions

A real-valued kernel function K(·, ·) is a nonnegative symmetric continuous function

K : Rn × Rn → R+

where symmetric means that K(x1, x2) = K(x2, x1) for all x1 ∈ Rn, x2 ∈ Rn.
Examples of kernel functions are:

• Linear: K(x1, x2) = 〈x1, x2〉 = xT1 x2

• Polynomial of degree d ∈ Z+: K(x1, x2) = (b+ xT1 x2)d, b ∈ R

• Perceptron: K(x1, x2) = tanh(axT1 x2 + b), a, b ∈ R

A kernel function is said to satisfy the Mercer’s condition if for all square-integrable
functions g (i.e. satisfying

∫
|g(x)|2dx <∞ ) one has∫ ∫

g(x)K(x, y)g(y)dxdy ≥ 0 (F.0.1)

F.1 Distance-based kernel functions

Let us define a distance function

d : Rn × Rn → R+ (F.1.2)

which depends on a parameter B called width or bandwidth. The kernel function can be
expressed as a function

K : R+ → R+ (F.1.3)

of the distance d between the two inputs. The maximum value of a kernel function is
located at zero distance and the function decays smoothly as the distance increases.

Here you have some examples of distance-based kernel functions where B is the band-
width parameter:

Inverse distance:

K(d) =
1

(d/B)p
(F.1.4)

This function goes to infinity as the distance approaches zero.

Corrected inverse distance:

K(d) =
1

1 + (d/B)p
(F.1.5)

Gaussian kernel:

K(d) = exp

(
− d

2

B2

)
(F.1.6)

Exponential kernel:

K(d) = exp

(
−
∣∣∣∣ dB
∣∣∣∣) (F.1.7)
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Quadratic or Epanechnikov kernel:

K(d) =

{(
1− d

B

2
)

if |d| < B

0 otherwise
(F.1.8)

Tricube kernel:

K(d) =


(

1−
∣∣ d
B

∣∣3)3

if |d| < B

0 otherwise
(F.1.9)

Uniform kernel:

K(d) =

{
1 if |d| < B

0 otherwise
(F.1.10)

Triangular kernel:

K(d) =

{
1−

∣∣ d
B

∣∣ if |d| < B

0 otherwise
(F.1.11)



Appendix G

Companion R package

Several scripts are used in the main text to illustrate statistical and machine learning
notions. All the scripts have been implemented in R and are contained in the R package
gbcode.

To install the R package gbcode containing all the scripts mentioned in the text you
should run the following R instructions in the R console.

> library(devtools)

> install_github("gbonte/gbcode")

> require(gbcode)

Once installed, all the scripts will be available in the root directory of the package. In
order to retrieve the directory containing the gbcode package you should type

> system.file(package = "gbcode")

To change the directory to the one containing scripts

> setwd(find.package("gbcode"))

If you wish to run a script mentioned in the main text (e.g. the script Probability/freq.R)
without changing the local directory you should run

> source(system.file("scripts","Probability/freq.R",package = "gbcode"))

If you wish to edit a script mentioned in the main text (e.g. the script Probability/freq.R)
without changing the local directory you should run

> edit(file=system.file("scripts","Probability/freq.R",package = "gbcode"))

If you wish to execute a Shiny dashboard (e.g. leastsquares.R) you should run

> library(shiny)

> source(system.file("shiny","leastsquares.R",package = "gbcode"))
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Appendix H

Companion R Shiny
dashboards

Several Shiny dashboards are used in the main text to illustrate statistical and machine
learning notions. All the Shiny dashboards are contained in the directory shiny of the R
package gbcodeand require the installation of the library shiny. To run a Shiny dashboard
(e.g. condpro.R) you should first move to their directory by

> setwd(paste(find.package("gbcode"),"shiny",sep="/"))

and then run

> runApp("condpro.R")

The Shiny dashboards are also active under Shinyapps1. To run a Shiny dashboard named
NAME.R go to https://gbonte.shinyapps.io/NAME. For instance, to run the Shiny dash-
board condpro.R go to:

https://gbonte.shinyapps.io/condpro

H.1 List of Shiny dashboards

• mcarlo.R: visualisation by means of Monte Carlo simulation.of

1. transformation of a r.v.

2. result of operation on two r.v.s

3. central limit theorem

4. result of linear combination of two independent r.v.s

• condpro.R: visualisation of conditional probability vs. marginal probability in the
bivariate gaussian case and in the regression function case.

• estimation.R: visualisation of different problems of estimation:

1. estimation of mean and variance of a univariate normal r.v.: bias/variance
visualisation

2. estimation of mean and variance of a univariate uniform r.v.: bias/variance
visualisation

3. estimation of confidence interval of the mean of a univariate normal r.v.

4. maximum-likelihood estimation of the mean of a univariate normal r.v.: visual-
isation of the log-likelihood function together with the value of the maximum-
likelihood estimator

1https://www.shinyapps.io
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5. maximum-likelihood estimation of the mean and the variance of a univariate
normal r.v.: visualisation of the bivariate log-likelihood function together with
the value of the maximum-likelihood estimator

6. estimation of mean and covariance of a bivariate normal r.v.: bias/variance
visualisation

7. least-squares estimation of the parameters of a linear target function: visu-
alisation of bias/variance of the predicted conditional expectation and of the
parameter estimators

8. least-squares estimation of the parameters of a nonlinear target function: vi-
sualisation of bias/variance of the predicted conditional expectation

• bootstrap.R: study of the accuracy of the bootstrap estimation of the sampling
distribution, estimator variance and estimator bias. The dashboard considers the
case of sample average for which it is known that bias is null and variance is inversely
proportional to N (Section 3.5.3). The dashboard shows that the bootstrap returns
an accurate estimation of bias and variance of sample average.

• leastsquares.R: visualisation of the minimisation of the empirical risk with gradient-
based iteration. 3 dashboards:

1. linear least-squares: visualisation of the convex empirical risk function and
position of the estimation as gradient-based iteration proceeds

2. NNet least-squares: visualisation of the estimated regression function (single
layer, 3 hidden nodes NNET) and the associated empirical risk as gradient-
based iteration proceeds

3. KNN cross-validation: illustration of the points used for test as cross-validation
proceeds in the case of a KNN regressor (variable number of neighbours).

• regression.R: visualisation of the model selection trade-off in regression by show-
ing the impact of different kinds of hyper-parameters (degree of polynomial model,
number of neighbours in locally constant and locally linear fitting, number of trees
in Random Forest) on the bias, variance and generalisation error.

• classif.R: visualisation of different classification notions in 4 dashboards:

1. Univariate: visualise the relation between posterior probability and class con-
ditional densities in a univariate binary classification task

2. Linear discriminant: visualise the relation between bivariate class conditional
densities and linear discriminant

3. Perceptron: visualise the evolution of the perceptron hyperplane during the
gradient based minimisation of the hyperplane misclassification and the SVM
hyperplane

4. Assessment: visualise the relation between ROC curve, PR curve, confusion
matrix and classifier threshold in a univariate binary classification task.

• classif2.R: visualisation of direct and inverse conditional distributions in the uni-
modal and bimodal case.
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